These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 32066961)

  • 1. Chemogenetic Control of Nanobodies.
    Farrants H; Tarnawski M; Müller TG; Otsuka S; Hiblot J; Koch B; Kueblbeck M; Kräusslich HG; Ellenberg J; Johnsson K
    Nat Methods; 2020 Mar; 17(3):279-282. PubMed ID: 32066961
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Engineering and characterization of GFP-targeting nanobody: Expression, purification, and post-translational modification analysis.
    Weng D; Yang L; Xie Y
    Protein Expr Purif; 2024 Sep; 221():106501. PubMed ID: 38782081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanobody‑horseradish peroxidase and -EGFP fusions as reagents to detect porcine parvovirus in the immunoassays.
    Lu Q; Li X; Zhao J; Zhu J; Luo Y; Duan H; Ji P; Wang K; Liu B; Wang X; Fan W; Sun Y; Zhou EM; Zhao Q
    J Nanobiotechnology; 2020 Jan; 18(1):7. PubMed ID: 31910833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Specific Antibody Fragment Conjugates for Reversible Staining in Fluorescence Microscopy.
    Schwach J; Kolobynina K; Brandstetter K; Gerlach M; Ochtrop P; Helma J; Hackenberger CPR; Harz H; Cardoso MC; Leonhardt H; Stengl A
    Chembiochem; 2021 Apr; 22(7):1205-1209. PubMed ID: 33207032
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy profile of nanobody-GFP complex under force.
    Klamecka K; Severin PM; Milles LF; Gaub HE; Leonhardt H
    Phys Biol; 2015 Sep; 12(5):056009. PubMed ID: 26356046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-affinity target binding engineered via fusion of a single-domain antibody fragment with a ligand-tailored SH3 domain.
    Järviluoma A; Strandin T; Lülf S; Bouchet J; Mäkelä AR; Geyer M; Benichou S; Saksela K
    PLoS One; 2012; 7(7):e40331. PubMed ID: 22792285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Patterning protein complexes on DNA nanostructures using a GFP nanobody.
    Sommese RF; Hariadi RF; Kim K; Liu M; Tyska MJ; Sivaramakrishnan S
    Protein Sci; 2016 Nov; 25(11):2089-2094. PubMed ID: 27538185
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analysis of Endocytic Uptake and Retrograde Transport to the Trans-Golgi Network Using Functionalized Nanobodies in Cultured Cells.
    Buser DP; Spiess M
    J Vis Exp; 2019 Feb; (144):. PubMed ID: 30855580
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Engineered Upconversion Nanoparticles for Resolving Protein Interactions inside Living Cells.
    Drees C; Raj AN; Kurre R; Busch KB; Haase M; Piehler J
    Angew Chem Int Ed Engl; 2016 Sep; 55(38):11668-72. PubMed ID: 27510808
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural and thermodynamic analysis of the GFP:GFP-nanobody complex.
    Kubala MH; Kovtun O; Alexandrov K; Collins BM
    Protein Sci; 2010 Dec; 19(12):2389-401. PubMed ID: 20945358
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Unintended perturbation of protein function using GFP nanobodies in human cells.
    Küey C; Larocque G; Clarke NI; Royle SJ
    J Cell Sci; 2019 Nov; 132(21):. PubMed ID: 31601614
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli.
    Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN
    Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Reporter-nanobody fusions (RANbodies) as versatile, small, sensitive immunohistochemical reagents.
    Yamagata M; Sanes JR
    Proc Natl Acad Sci U S A; 2018 Feb; 115(9):2126-2131. PubMed ID: 29440485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mapping and characterization of the N-terminal I domain of human immunodeficiency virus type 1 Pr55(Gag).
    Sandefur S; Smith RM; Varthakavi V; Spearman P
    J Virol; 2000 Aug; 74(16):7238-49. PubMed ID: 10906178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanobody click chemistry for convenient site-specific fluorescent labelling, single step immunocytochemistry and delivery into living cells by photoporation and live cell imaging.
    Hebbrecht T; Liu J; Zwaenepoel O; Boddin G; Van Leene C; Decoene K; Madder A; Braeckmans K; Gettemans J
    N Biotechnol; 2020 Nov; 59():33-43. PubMed ID: 32659511
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In Vivo Interaction Studies by Measuring Förster Resonance Energy Transfer Through Fluorescence Lifetime Imaging Microscopy (FRET/FLIM).
    Fäßler F; Pimpl P
    Methods Mol Biol; 2017; 1662():159-170. PubMed ID: 28861826
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanobody-Displaying Flagellar Nanotubes.
    Klein Á; Kovács M; Muskotál A; Jankovics H; Tóth B; Pósfai M; Vonderviszt F
    Sci Rep; 2018 Feb; 8(1):3584. PubMed ID: 29483707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel fluorescence resonance energy transfer assay demonstrates that the human immunodeficiency virus type 1 Pr55Gag I domain mediates Gag-Gag interactions.
    Derdowski A; Ding L; Spearman P
    J Virol; 2004 Feb; 78(3):1230-42. PubMed ID: 14722278
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular Delivery of Nanobodies for Imaging of Target Proteins in Live Cells.
    Röder R; Helma J; Preiß T; Rädler JO; Leonhardt H; Wagner E
    Pharm Res; 2017 Jan; 34(1):161-174. PubMed ID: 27800572
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modulation of protein properties in living cells using nanobodies.
    Kirchhofer A; Helma J; Schmidthals K; Frauer C; Cui S; Karcher A; Pellis M; Muyldermans S; Casas-Delucchi CS; Cardoso MC; Leonhardt H; Hopfner KP; Rothbauer U
    Nat Struct Mol Biol; 2010 Jan; 17(1):133-8. PubMed ID: 20010839
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.