These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 32067005)

  • 1. Reversible cation exchange on macroscopic CdSe/CdS and CdS nanorod based gel networks.
    Lübkemann F; Rusch P; Getschmann S; Schremmer B; Schäfer M; Schulz M; Hoppe B; Behrens P; Bigall NC; Dorfs D
    Nanoscale; 2020 Feb; 12(8):5038-5047. PubMed ID: 32067005
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Versatile Route to Assemble Semiconductor Nanoparticles into Functional Aerogels by Means of Trivalent Cations.
    Zámbó D; Schlosser A; Rusch P; Lübkemann F; Koch J; Pfnür H; Bigall NC
    Small; 2020 Apr; 16(16):e1906934. PubMed ID: 32162787
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure-Selective Synthesis of Wurtzite and Zincblende ZnS, CdS, and CuInS
    Fenton JL; Steimle BC; Schaak RE
    Inorg Chem; 2019 Jan; 58(1):672-678. PubMed ID: 30525523
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Selective cation exchange in the core region of Cu2-xSe/Cu2-xS core/shell nanocrystals.
    Miszta K; Gariano G; Brescia R; Marras S; De Donato F; Ghosh S; De Trizio L; Manna L
    J Am Chem Soc; 2015 Sep; 137(38):12195-8. PubMed ID: 26360611
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control over Structure and Properties in Nanocrystal Aerogels at the Nano-, Micro-, and Macroscale.
    Rusch P; Zámbó D; Bigall NC
    Acc Chem Res; 2020 Oct; 53(10):2414-2424. PubMed ID: 33030336
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature and Composition Dependent Optical Properties of CdSe/CdS Dot/Rod-Based Aerogel Networks.
    Rusch P; Pluta D; Lübkemann F; Dorfs D; Zámbó D; Bigall NC
    Chemphyschem; 2022 Jan; 23(2):e202100755. PubMed ID: 34735043
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temperature-Dependent Selection of Reaction Pathways, Reactive Species, and Products during Postsynthetic Selenization of Copper Sulfide Nanoparticles.
    Hole B; Luo Q; Garcia R; Xie W; Rudman E; Nguyen CLT; Dhakal D; Young HL; Thompson KL; Butterfield AG; Schaak RE; Plass KE
    Chem Mater; 2023 Nov; 35(21):9073-9085. PubMed ID: 38027539
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Made-to-Order Heterostructured Nanoparticle Libraries.
    Schaak RE; Steimle BC; Fenton JL
    Acc Chem Res; 2020 Nov; 53(11):2558-2568. PubMed ID: 33026804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influencing the coupling between network building blocks in CdSe/CdS dot/rod aerogels by partial cation exchange.
    Rusch P; Lübkemann F; Borg H; Eckert JG; Dorfs D; Bigall NC
    J Chem Phys; 2022 Jun; 156(23):234701. PubMed ID: 35732518
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Ultrathin and Thickness-Controlled Cu2-xSe Nanosheets via Cation Exchange.
    Wang Y; Zhukovskyi M; Tongying P; Tian Y; Kuno M
    J Phys Chem Lett; 2014 Nov; 5(21):3608-13. PubMed ID: 26278726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Manipulating Cation Exchange Reactions in Cu
    Chen L; Kong Z; Hu H; Tao H; Wang Y; Gao J; Li G
    Inorg Chem; 2022 Jun; 61(24):9063-9072. PubMed ID: 35671331
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanocrystal film patterning by inhibiting cation exchange via electron-beam or X-ray lithography.
    Miszta K; Greullet F; Marras S; Prato M; Toma A; Arciniegas M; Manna L; Krahne R
    Nano Lett; 2014; 14(4):2116-22. PubMed ID: 24593136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoheterostructure cation exchange: anionic framework conservation.
    Jain PK; Amirav L; Aloni S; Alivisatos AP
    J Am Chem Soc; 2010 Jul; 132(29):9997-9. PubMed ID: 20593896
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controllable conversion of plasmonic Cu2-xS nanoparticles to Au2S by cation exchange and electron beam induced transformation of Cu2-xS-Au2S core/shell nanostructures.
    Wang X; Liu X; Zhu D; Swihart MT
    Nanoscale; 2014 Aug; 6(15):8852-7. PubMed ID: 24957012
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crystal structure dependent cation exchange reactions in Cu
    Chen L; Kong Z; Tao H; Hu H; Gao J; Li G
    Nanoscale; 2022 Mar; 14(10):3907-3916. PubMed ID: 35224594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expanding the repertoire of chalcogenide nanocrystal networks: Ag(2)Se gels and aerogels by cation exchange reactions.
    Yao Q; Arachchige IU; Brock SL
    J Am Chem Soc; 2009 Mar; 131(8):2800-1. PubMed ID: 19199642
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cation Exchange during the Synthesis of Colloidal Type-II ZnSe-Dot/CdS-Rod Nanocrystals.
    Rebmann J; Werners H; Johst F; Dohrmann M; Staechelin YU; Strelow C; Mews A; Kipp T
    Chem Mater; 2023 Feb; 35(3):1238-1248. PubMed ID: 36818587
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Cd/Pb Chalcogenide Heterostructured Janus Particles via Controllable Cation Exchange.
    Zhang J; Chernomordik BD; Crisp RW; Kroupa DM; Luther JM; Miller EM; Gao J; Beard MC
    ACS Nano; 2015 Jul; 9(7):7151-63. PubMed ID: 26161785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inorganic cluster syntheses of TM2+-doped quantum dots (CdSe, CdS, CdSe/CdS): physical property dependence on dopant locale.
    Archer PI; Santangelo SA; Gamelin DR
    J Am Chem Soc; 2007 Aug; 129(31):9808-18. PubMed ID: 17629274
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective Synthesis of
    More PV; Hiragond C; Bhanoth S; Khanna PK
    J Nanosci Nanotechnol; 2018 Jan; 18(1):242-250. PubMed ID: 29768836
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.