These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

328 related articles for article (PubMed ID: 32067010)

  • 1. A Co-MOF-derived oxygen-vacancy-rich Co
    Liu H; Mai Z; Xu X; Wang Y
    Dalton Trans; 2020 Mar; 49(9):2880-2887. PubMed ID: 32067010
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coordination polymer-derived Co
    Wang Y; Xu X; Liu L; Chen J; Shi G
    Dalton Trans; 2019 May; 48(21):7150-7157. PubMed ID: 30334054
    [TBL] [Abstract][Full Text] [Related]  

  • 3. NiMOF-derived oxygen vacancy rich NiO with excellent capacitance and ORR/OER activities as a cathode material for Zn-based hybrid batteries.
    Xu D; Huang Q; Xu X; Sang X
    Dalton Trans; 2020 Sep; 49(35):12441-12449. PubMed ID: 32852016
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MOF Derived Co
    Singh T; Das C; Bothra N; Sikdar N; Das S; Pati SK; Maji TK
    Inorg Chem; 2020 Mar; 59(5):3160-3170. PubMed ID: 32052963
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen Vacancy-Rich In-Doped CoO/CoP Heterostructure as an Effective Air Cathode for Rechargeable Zn-Air Batteries.
    Jin W; Chen J; Liu B; Hu J; Wu Z; Cai W; Fu G
    Small; 2019 Nov; 15(46):e1904210. PubMed ID: 31559688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyoxometalate Compound-Derived MoP-Based Electrocatalyst with N-Doped Mesoporous Carbon as Matrix, a Cathode Material for Zn-H
    Lu W; Cui X; Xu X; Chen J; Wang Q
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42320-42327. PubMed ID: 30450891
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-Tuned Co3O4 Nanoparticles Dispersed on Nitrogen-Doped Graphene as an Efficient Cathode Electrocatalyst for Mechanical Rechargeable Zinc-Air Battery Application.
    Singh SK; Dhavale VM; Kurungot S
    ACS Appl Mater Interfaces; 2015 Sep; 7(38):21138-49. PubMed ID: 26376490
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni-doping optimized d-band center in bifunctional Fe
    Shi Y; Hu S; Xu X; Chen J
    Dalton Trans; 2024 Sep; 53(35):14801-14810. PubMed ID: 39163381
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Clarifying the Controversial Catalytic Performance of Co(OH)
    Song Z; Han X; Deng Y; Zhao N; Hu W; Zhong C
    ACS Appl Mater Interfaces; 2017 Jul; 9(27):22694-22703. PubMed ID: 28535344
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning the Bifunctional Oxygen Electrocatalytic Properties of Core-Shell Co
    Guo X; Hu X; Wu D; Jing C; Liu W; Ren Z; Zhao Q; Jiang X; Xu C; Zhang Y; Hu N
    ACS Appl Mater Interfaces; 2019 Jun; 11(24):21506-21514. PubMed ID: 31124648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic POM Electrocatalyst Achieves Low Voltage "Charge" in Zn-Air Battery Coupled with Bisphenol A Degradation.
    Yin X; Zhang Z; Yao K; Xu X; Wang Y
    Chemistry; 2021 Jun; 27(34):8774-8781. PubMed ID: 33844332
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical Co
    Zhong Y; Pan Z; Wang X; Yang J; Qiu Y; Xu S; Lu Y; Huang Q; Li W
    Adv Sci (Weinh); 2019 Jun; 6(11):1802243. PubMed ID: 31179211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Waterproof Rechargeable Hybrid Zinc Batteries Initiated by Multifunctional Oxygen Vacancies-Rich Cobalt Oxide.
    Ma L; Chen S; Pei Z; Li H; Wang Z; Liu Z; Tang Z; Zapien JA; Zhi C
    ACS Nano; 2018 Aug; 12(8):8597-8605. PubMed ID: 30040383
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Co-doped CeO
    Xiang W; Li Y; Wu M; Ma J; Sheng Z
    Nanotechnology; 2022 Jul; 33(41):. PubMed ID: 35793593
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Co3O4 nanoparticles decorated carbon nanofiber mat as binder-free air-cathode for high performance rechargeable zinc-air batteries.
    Li B; Ge X; Goh FW; Hor TS; Geng D; Du G; Liu Z; Zhang J; Liu X; Zong Y
    Nanoscale; 2015 Feb; 7(5):1830-8. PubMed ID: 25522330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advanced zinc-air batteries based on high-performance hybrid electrocatalysts.
    Li Y; Gong M; Liang Y; Feng J; Kim JE; Wang H; Hong G; Zhang B; Dai H
    Nat Commun; 2013; 4():1805. PubMed ID: 23651993
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ integration of CoFe alloy nanoparticles with nitrogen-doped carbon nanotubes as advanced bifunctional cathode catalysts for Zn-air batteries.
    Cai P; Hong Y; Ci S; Wen Z
    Nanoscale; 2016 Dec; 8(48):20048-20055. PubMed ID: 27883155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Air cathode of zinc-air batteries: a highly efficient and durable aerogel catalyst for oxygen reduction.
    Zhang L; Yang X; Cai R; Chen C; Xia Y; Zhang H; Yang D; Yao X
    Nanoscale; 2019 Jan; 11(3):826-832. PubMed ID: 30569935
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pollen-derived porous carbon decorated with cobalt/iron sulfide hybrids as cathode catalysts for flexible all-solid-state rechargeable Zn-air batteries.
    Fang W; Bai Z; Yu X; Zhang W; Wu M
    Nanoscale; 2020 Jun; 12(21):11746-11758. PubMed ID: 32458876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scalable 3-D Carbon Nitride Sponge as an Efficient Metal-Free Bifunctional Oxygen Electrocatalyst for Rechargeable Zn-Air Batteries.
    Shinde SS; Lee CH; Sami A; Kim DH; Lee SU; Lee JH
    ACS Nano; 2017 Jan; 11(1):347-357. PubMed ID: 28001038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.