These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
159 related articles for article (PubMed ID: 32067352)
1. A feasibility study of OCT for anatomical and vascular phenotyping of mouse embryo. Choi WJ; Maga AM; Kim ES; Wang RK J Biophotonics; 2020 May; 13(5):e201960225. PubMed ID: 32067352 [TBL] [Abstract][Full Text] [Related]
2. Assessment of chronic radiation proctopathy and radiofrequency ablation treatment follow-up with optical coherence tomography angiography: A pilot study. Ahsen OO; Liang K; Lee HC; Wang Z; Fujimoto JG; Mashimo H World J Gastroenterol; 2019 Apr; 25(16):1997-2009. PubMed ID: 31086467 [TBL] [Abstract][Full Text] [Related]
3. Imaging of cardiovascular development in mammalian embryos using optical coherence tomography. Garcia MD; Lopez AL; Larin KV; Larina IV Methods Mol Biol; 2015; 1214():151-61. PubMed ID: 25468602 [TBL] [Abstract][Full Text] [Related]
4. Multimodal embryonic imaging using optical coherence tomography, selective plane illumination microscopy, and optical projection tomography. Singh M; Wu C; Mayerich D; Dickinson ME; Larina IV; Larin KV Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():3922-3925. PubMed ID: 28269143 [TBL] [Abstract][Full Text] [Related]
5. Dynamic Imaging of Mouse Embryos and Cardiac Development in Static Culture. Lopez AL; Larina IV Methods Mol Biol; 2021; 2206():129-141. PubMed ID: 32754815 [TBL] [Abstract][Full Text] [Related]
7. Optical coherence tomography guided microinjections in live mouse embryos: high-resolution targeted manipulation for mouse embryonic research. Syed SH; Coughlin AJ; Garcia MD; Wang S; West JL; Larin KV; Larina IV J Biomed Opt; 2015 May; 20(5):051020. PubMed ID: 25581495 [TBL] [Abstract][Full Text] [Related]
8. Optical coherence tomography as a noninvasive 3D real time imaging tool for the rapid evaluation of phenotypic variations in insect embryonic development. Su Y; Wei L; Tan H; Li J; Li W; Fu L; Wang T; Kang L; Yao XS J Biophotonics; 2020 Feb; 13(2):e201960047. PubMed ID: 31682322 [TBL] [Abstract][Full Text] [Related]
9. Optical coherence tomography for embryonic imaging: a review. Raghunathan R; Singh M; Dickinson ME; Larin KV J Biomed Opt; 2016 May; 21(5):50902. PubMed ID: 27228503 [TBL] [Abstract][Full Text] [Related]
10. Optical coherence tomography for high-resolution imaging of mouse development in utero. Syed SH; Larin KV; Dickinson ME; Larina IV J Biomed Opt; 2011 Apr; 16(4):046004. PubMed ID: 21529073 [TBL] [Abstract][Full Text] [Related]
11. Optical Coherence Tomography for live imaging of mammalian development. Larina IV; Larin KV; Justice MJ; Dickinson ME Curr Opin Genet Dev; 2011 Oct; 21(5):579-84. PubMed ID: 21962442 [TBL] [Abstract][Full Text] [Related]
12. Applicability, usability, and limitations of murine embryonic imaging with optical coherence tomography and optical projection tomography. Singh M; Raghunathan R; Piazza V; Davis-Loiacono AM; Cable A; Vedakkan TJ; Janecek T; Frazier MV; Nair A; Wu C; Larina IV; Dickinson ME; Larin KV Biomed Opt Express; 2016 Jun; 7(6):2295-310. PubMed ID: 27375945 [TBL] [Abstract][Full Text] [Related]
13. Live four-dimensional optical coherence tomography reveals embryonic cardiac phenotype in mouse mutant. Lopez AL; Wang S; Larin KV; Overbeek PA; Larina IV J Biomed Opt; 2015; 20(9):090501. PubMed ID: 26385422 [TBL] [Abstract][Full Text] [Related]
14. Tissue biomechanics during cranial neural tube closure measured by Brillouin microscopy and optical coherence tomography. Zhang J; Raghunathan R; Rippy J; Wu C; Finnell RH; Larin KV; Scarcelli G Birth Defects Res; 2019 Aug; 111(14):991-998. PubMed ID: 30239173 [TBL] [Abstract][Full Text] [Related]
15. Direct four-dimensional structural and functional imaging of cardiovascular dynamics in mouse embryos with 1.5 MHz optical coherence tomography. Wang S; Singh M; Lopez AL; Wu C; Raghunathan R; Schill A; Li J; Larin KV; Larina IV Opt Lett; 2015 Oct; 40(20):4791-4. PubMed ID: 26469621 [TBL] [Abstract][Full Text] [Related]
16. Depth-Resolved Enhanced Spectral-Domain OCT Imaging of Live Mammalian Embryos Using Gold Nanoparticles as Contrast Agent. Huang Y; Li M; Huang D; Qiu Q; Lin W; Liu J; Yang W; Yao Y; Yan G; Qu N; Tuchin VV; Fan S; Liu G; Zhao Q; Chen X Small; 2019 Aug; 15(35):e1902346. PubMed ID: 31304667 [TBL] [Abstract][Full Text] [Related]
17. 1.7-Micron Optical Coherence Tomography Angiography for Characterization of Skin Lesions-A Feasibility Study. Li Y; Murthy RS; Zhu Y; Zhang F; Tang J; Mehrabi JN; Kelly KM; Chen Z IEEE Trans Med Imaging; 2021 Sep; 40(9):2507-2512. PubMed ID: 33999817 [TBL] [Abstract][Full Text] [Related]
18. Multifunctional in vivo imaging for monitoring wound healing using swept-source polarization-sensitive optical coherence tomography. Park KS; Choi WJ; Song S; Xu J; Wang RK Lasers Surg Med; 2018 Mar; 50(3):213-221. PubMed ID: 29193202 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional optical coherence tomography of the embryonic murine cardiovascular system. Luo W; Marks DL; Ralston TS; Boppart SA J Biomed Opt; 2006; 11(2):021014. PubMed ID: 16674189 [TBL] [Abstract][Full Text] [Related]
20. Detection of microvascular retinal changes in type I diabetic mice with optical coherence tomography angiography. Uehara H; Lesuma T; Stocking P; Jensen N; Kumar SR; Zhang MA; Choi S; Zhang X; Archer B; Carroll L; Ambati BK Exp Eye Res; 2019 Jan; 178():91-98. PubMed ID: 30268699 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]