These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
372 related articles for article (PubMed ID: 32068231)
1. Evaluation of models for predicting the probability of malignancy in patients with pulmonary nodules. Li Y; Hu H; Wu Z; Yan G; Wu T; Liu S; Chen W; Lu Z Biosci Rep; 2020 Feb; 40(2):. PubMed ID: 32068231 [TBL] [Abstract][Full Text] [Related]
2. Risk of malignancy in pulmonary nodules: A validation study of four prediction models. Al-Ameri A; Malhotra P; Thygesen H; Plant PK; Vaidyanathan S; Karthik S; Scarsbrook A; Callister ME Lung Cancer; 2015 Jul; 89(1):27-30. PubMed ID: 25864782 [TBL] [Abstract][Full Text] [Related]
3. Evaluation of Prediction Models for Identifying Malignancy in Pulmonary Nodules Detected via Low-Dose Computed Tomography. González Maldonado S; Delorme S; Hüsing A; Motsch E; Kauczor HU; Heussel CP; Kaaks R JAMA Netw Open; 2020 Feb; 3(2):e1921221. PubMed ID: 32058555 [TBL] [Abstract][Full Text] [Related]
4. Combining serum miRNAs, CEA, and CYFRA21-1 with imaging and clinical features to distinguish benign and malignant pulmonary nodules: a pilot study : Xianfeng Li et al.: Combining biomarker, imaging, and clinical features to distinguish pulmonary nodules. Li X; Zhang Q; Jin X; Cao L World J Surg Oncol; 2017 May; 15(1):107. PubMed ID: 28545454 [TBL] [Abstract][Full Text] [Related]
5. Novel and convenient method to evaluate the character of solitary pulmonary nodule-comparison of three mathematical prediction models and further stratification of risk factors. Xiao F; Liu D; Guo Y; Shi B; Song Z; Tian Y; Liang C PLoS One; 2013; 8(10):e78271. PubMed ID: 24205175 [TBL] [Abstract][Full Text] [Related]
6. [The diagnostic value of machine-learning-based model for predicting the malignancy of solid nodules in multiple pulmonary nodules]. Zhang K; Wei ZH; Wang X; Chen KZ Zhonghua Wai Ke Za Zhi; 2022 Jun; 60(6):573-579. PubMed ID: 35658345 [No Abstract] [Full Text] [Related]
7. Evaluating the Patient With a Pulmonary Nodule: A Review. Mazzone PJ; Lam L JAMA; 2022 Jan; 327(3):264-273. PubMed ID: 35040882 [TBL] [Abstract][Full Text] [Related]
8. A nomogram combining CT-based radiomic features with clinical features for the differentiation of benign and malignant cystic pulmonary nodules. Yao Y; Yang Y; Hu Q; Xie X; Jiang W; Liu C; Li X; Wang Y; Luo L; Li J J Cardiothorac Surg; 2024 Jun; 19(1):392. PubMed ID: 38937772 [TBL] [Abstract][Full Text] [Related]
9. Autoantibody Signature Enhances the Positive Predictive Power of Computed Tomography and Nodule-Based Risk Models for Detection of Lung Cancer. Massion PP; Healey GF; Peek LJ; Fredericks L; Sewell HF; Murray A; Robertson JF J Thorac Oncol; 2017 Mar; 12(3):578-584. PubMed ID: 27615397 [TBL] [Abstract][Full Text] [Related]
10. Establishment and validation of multiclassification prediction models for pulmonary nodules based on machine learning. Liu Q; Lv X; Zhou D; Yu N; Hong Y; Zeng Y Clin Respir J; 2024 May; 18(5):e13769. PubMed ID: 38736274 [TBL] [Abstract][Full Text] [Related]
13. Development and Validation of Machine Learning-based Model for the Prediction of Malignancy in Multiple Pulmonary Nodules: Analysis from Multicentric Cohorts. Chen K; Nie Y; Park S; Zhang K; Zhang Y; Liu Y; Hui B; Zhou L; Wang X; Qi Q; Li H; Kang G; Huang Y; Chen Y; Liu J; Cui J; Li M; Park IK; Kang CH; Shen H; Yang Y; Guan T; Zhang Y; Yang F; Kim YT; Wang J Clin Cancer Res; 2021 Apr; 27(8):2255-2265. PubMed ID: 33627492 [TBL] [Abstract][Full Text] [Related]
14. Management of Pulmonary Nodules by Community Pulmonologists: A Multicenter Observational Study. Tanner NT; Aggarwal J; Gould MK; Kearney P; Diette G; Vachani A; Fang KC; Silvestri GA Chest; 2015 Dec; 148(6):1405-1414. PubMed ID: 26087071 [TBL] [Abstract][Full Text] [Related]
15. Models to Estimate the Probability of Malignancy in Patients with Pulmonary Nodules. Choi HK; Ghobrial M; Mazzone PJ Ann Am Thorac Soc; 2018 Oct; 15(10):1117-1126. PubMed ID: 30272500 [TBL] [Abstract][Full Text] [Related]
16. A prediction model to evaluate the pretest risk of malignancy in solitary pulmonary nodules: evidence from a large Chinese southwestern population. Wu Z; Huang T; Zhang S; Cheng D; Li W; Chen B J Cancer Res Clin Oncol; 2021 Jan; 147(1):275-285. PubMed ID: 33025281 [TBL] [Abstract][Full Text] [Related]
17. The Probability of Lung Cancer in Patients With Incidentally Detected Pulmonary Nodules: Clinical Characteristics and Accuracy of Prediction Models. Vachani A; Zheng C; Amy Liu IL; Huang BZ; Osuji TA; Gould MK Chest; 2022 Feb; 161(2):562-571. PubMed ID: 34364866 [TBL] [Abstract][Full Text] [Related]
18. Developing a multi-institutional nomogram for assessing lung cancer risk in patients with 5-30 mm pulmonary nodules: a retrospective analysis. Jiang Y; Deng T; Huang Y; Ren B; He L; Pang M; Jiang L PeerJ; 2023; 11():e16539. PubMed ID: 38107565 [TBL] [Abstract][Full Text] [Related]
19. [Establishment and Verification of A Novel Predictive Model of Malignancy for Non-solid Pulmonary Nodules]. Xiao F; Yu Q; Zhang Z; Liu D; Liang C Zhongguo Fei Ai Za Zhi; 2019 Jan; 22(1):26-33. PubMed ID: 30674390 [TBL] [Abstract][Full Text] [Related]
20. [Multivariate Analysis of Solid Pulmonary Nodules Smaller than 1 cm in Distinguishing Lung Cancer from Intrapulmonary Lymph Nodes]. Tang J; Liu C; Wang P; Cui Y Zhongguo Fei Ai Za Zhi; 2021 Feb; 24(2):94-98. PubMed ID: 33508896 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]