BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 32068336)

  • 21. INDUCER OF CBF EXPRESSION 1 integrates cold signals into FLOWERING LOCUS C-mediated flowering pathways in Arabidopsis.
    Lee JH; Jung JH; Park CM
    Plant J; 2015 Oct; 84(1):29-40. PubMed ID: 26248809
    [TBL] [Abstract][Full Text] [Related]  

  • 22. RDM4 modulates cold stress resistance in Arabidopsis partially through the CBF-mediated pathway.
    Chan Z; Wang Y; Cao M; Gong Y; Mu Z; Wang H; Hu Y; Deng X; He XJ; Zhu JK
    New Phytol; 2016 Mar; 209(4):1527-39. PubMed ID: 26522658
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A role for circadian evening elements in cold-regulated gene expression in Arabidopsis.
    Mikkelsen MD; Thomashow MF
    Plant J; 2009 Oct; 60(2):328-39. PubMed ID: 19566593
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The transcription factor MYB43 antagonizes with ICE1 to regulate freezing tolerance in Arabidopsis.
    Zheng P; Cao L; Zhang C; Fang X; Wang L; Miao M; Tang X; Liu Y; Cao S
    New Phytol; 2023 Jun; 238(6):2440-2459. PubMed ID: 36922399
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Histone dynamics and roles of histone acetyltransferases during cold-induced gene regulation in Arabidopsis.
    Pavangadkar K; Thomashow MF; Triezenberg SJ
    Plant Mol Biol; 2010 Sep; 74(1-2):183-200. PubMed ID: 20661629
    [TBL] [Abstract][Full Text] [Related]  

  • 26. HHP1, a novel signalling component in the cross-talk between the cold and osmotic signalling pathways in Arabidopsis.
    Chen CC; Liang CS; Kao AL; Yang CC
    J Exp Bot; 2010 Jul; 61(12):3305-20. PubMed ID: 20566565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. StICE1 enhances plant cold tolerance by directly upregulating StLTI6A expression.
    Wang X; Song Q; Guo H; Liu Y; Brestic M; Yang X
    Plant Cell Rep; 2023 Jan; 42(1):197-210. PubMed ID: 36371722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Different Cold-Signaling Pathways Function in the Responses to Rapid and Gradual Decreases in Temperature.
    Kidokoro S; Yoneda K; Takasaki H; Takahashi F; Shinozaki K; Yamaguchi-Shinozaki K
    Plant Cell; 2017 Apr; 29(4):760-774. PubMed ID: 28351986
    [TBL] [Abstract][Full Text] [Related]  

  • 29. MdbHLH4 negatively regulates apple cold tolerance by inhibiting MdCBF1/3 expression and promoting MdCAX3L-2 expression.
    Yang J; Guo X; Mei Q; Qiu L; Chen P; Li W; Mao K; Ma F
    Plant Physiol; 2023 Jan; 191(1):789-806. PubMed ID: 36331333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression.
    Gilmour SJ; Zarka DG; Stockinger EJ; Salazar MP; Houghton JM; Thomashow MF
    Plant J; 1998 Nov; 16(4):433-42. PubMed ID: 9881163
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquitination and degradation of ICE1.
    Dong CH; Agarwal M; Zhang Y; Xie Q; Zhu JK
    Proc Natl Acad Sci U S A; 2006 May; 103(21):8281-6. PubMed ID: 16702557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Increasing freezing tolerance: kinase regulation of ICE1.
    Zhan X; Zhu JK; Lang Z
    Dev Cell; 2015 Feb; 32(3):257-8. PubMed ID: 25669879
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cold activation of a plasma membrane-tethered NAC transcription factor induces a pathogen resistance response in Arabidopsis.
    Seo PJ; Kim MJ; Park JY; Kim SY; Jeon J; Lee YH; Kim J; Park CM
    Plant J; 2010 Feb; 61(4):661-71. PubMed ID: 19947982
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Arabidopsis thaliana ICE2 gene: phylogeny, structural evolution and functional diversification from ICE1.
    Kurbidaeva A; Ezhova T; Novokreshchenova M
    Plant Sci; 2014 Dec; 229():10-22. PubMed ID: 25443829
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Natural variation in CBF gene sequence, gene expression and freezing tolerance in the Versailles core collection of Arabidopsis thaliana.
    McKhann HI; Gery C; Bérard A; Lévêque S; Zuther E; Hincha DK; De Mita S; Brunel D; Téoulé E
    BMC Plant Biol; 2008 Oct; 8():105. PubMed ID: 18922165
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A DEAD box RNA helicase is critical for pre-mRNA splicing, cold-responsive gene regulation, and cold tolerance in Arabidopsis.
    Guan Q; Wu J; Zhang Y; Jiang C; Liu R; Chai C; Zhu J
    Plant Cell; 2013 Jan; 25(1):342-56. PubMed ID: 23371945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Arabidopsis NAC transcription factor VNI2 integrates abscisic acid signals into leaf senescence via the COR/RD genes.
    Yang SD; Seo PJ; Yoon HK; Park CM
    Plant Cell; 2011 Jun; 23(6):2155-68. PubMed ID: 21673078
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overexpression of the Arabidopsis CBF3 transcriptional activator mimics multiple biochemical changes associated with cold acclimation.
    Gilmour SJ; Sebolt AM; Salazar MP; Everard JD; Thomashow MF
    Plant Physiol; 2000 Dec; 124(4):1854-65. PubMed ID: 11115899
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of the transcriptional repressor MYB15 by mitogen-activated protein kinase 6 is required for freezing tolerance in Arabidopsis.
    Kim SH; Kim HS; Bahk S; An J; Yoo Y; Kim JY; Chung WS
    Nucleic Acids Res; 2017 Jun; 45(11):6613-6627. PubMed ID: 28510716
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of BdCBF genes and genome-wide transcriptome profiling of BdCBF3-dependent and -independent cold stress responses in Brachypodium distachyon.
    Hao J; Yang J; Dong J; Fei SZ
    Plant Sci; 2017 Sep; 262():52-61. PubMed ID: 28716420
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.