These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

560 related articles for article (PubMed ID: 32068661)

  • 1. Early Posttransplant Mobilization of Monocytic Myeloid-derived Suppressor Cell Correlates With Increase in Soluble Immunosuppressive Factors and Predicts Cancer in Kidney Recipients.
    Utrero-Rico A; Laguna-Goya R; Cano-Romero F; Chivite-Lacaba M; Gonzalez-Cuadrado C; Rodríguez-Sánchez E; Ruiz-Hurtado G; Serrano A; Fernández-Ruiz M; Justo I; González E; Andrés A; Paz-Artal E
    Transplantation; 2020 Dec; 104(12):2599-2608. PubMed ID: 32068661
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Circulating myeloid-derived suppressor cells: An independent prognostic factor in patients with breast cancer.
    Safarzadeh E; Hashemzadeh S; Duijf PHG; Mansoori B; Khaze V; Mohammadi A; Kazemi T; Yousefi M; Asadi M; Mohammadi H; Babaie F; Baradaran B
    J Cell Physiol; 2019 Apr; 234(4):3515-3525. PubMed ID: 30362521
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Myeloid-Derived Suppressor Cells in Kidney Transplant Recipients and the Effect of Maintenance Immunotherapy.
    Iglesias-Escudero M; Sansegundo-Arribas D; Riquelme P; Merino-Fernández D; Guiral-Foz S; Pérez C; Valero R; Ruiz JC; Rodrigo E; Lamadrid-Perojo P; Hutchinson JA; Ochando J; López-Hoyos M
    Front Immunol; 2020; 11():643. PubMed ID: 32425928
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Immunosuppressive role of CD11b
    Hyun SY; Na EJ; Jang JE; Chung H; Kim SJ; Kim JS; Kong JH; Shim KY; Lee JI; Min YH; Cheong JW
    Cancer Med; 2020 Oct; 9(19):7007-7017. PubMed ID: 32780544
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Immunosuppression by monocytic myeloid-derived suppressor cells in patients with pancreatic ductal carcinoma is orchestrated by STAT3.
    Trovato R; Fiore A; Sartori S; Canè S; Giugno R; Cascione L; Paiella S; Salvia R; De Sanctis F; Poffe O; Anselmi C; Hofer F; Sartoris S; Piro G; Carbone C; Corbo V; Lawlor R; Solito S; Pinton L; Mandruzzato S; Bassi C; Scarpa A; Bronte V; Ugel S
    J Immunother Cancer; 2019 Sep; 7(1):255. PubMed ID: 31533831
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunosuppressive effects and mechanisms of three myeloid-derived suppressor cells subsets including monocytic-myeloid-derived suppressor cells, granulocytic-myeloid-derived suppressor cells, and immature-myeloid-derived suppressor cells.
    Nagatani Y; Funakoshi Y; Suto H; Imamura Y; Toyoda M; Kiyota N; Yamashita K; Minami H
    J Cancer Res Ther; 2021; 17(4):1093-1100. PubMed ID: 34528569
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expansion of Monocytic Myeloid-Derived Suppressor Cells in Patients Under Hemodialysis Might Lead to Cardiovascular and Cerebrovascular Events.
    Xing YF; Cai JR; Qin JJ; Zhou WY; Li CM; Li X
    Front Immunol; 2020; 11():577253. PubMed ID: 33584644
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Persistent accumulation of circulating monocytic myeloid-derived suppressor cells contributes to post-infectious immunosuppression in renal transplant recipients with bacterial infection: A pilot study.
    Jiang Y; Feng S; Ji J; Lin Z; Zhang X
    Transpl Immunol; 2018 Jun; 48():10-17. PubMed ID: 29477752
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Expansion of PMN-myeloid derived suppressor cells and their clinical relevance in patients with oral squamous cell carcinoma.
    Zhong LM; Liu ZG; Zhou X; Song SH; Weng GY; Wen Y; Liu FB; Cao DL; Liu YF
    Oral Oncol; 2019 Aug; 95():157-163. PubMed ID: 31345384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Myeloid-Derived Suppressor Cells in Lung Transplantation.
    Heigl T; Singh A; Saez-Gimenez B; Kaes J; Van Herck A; Sacreas A; Beeckmans H; Vanstapel A; Verleden SE; Van Raemdonck DE; Verleden G; Vanaudenaerde BM; Hartl D; Vos R
    Front Immunol; 2019; 10():900. PubMed ID: 31080450
    [TBL] [Abstract][Full Text] [Related]  

  • 11. ILT3 (LILRB4) Promotes the Immunosuppressive Function of Tumor-Educated Human Monocytic Myeloid-Derived Suppressor Cells.
    Singh L; Muise ES; Bhattacharya A; Grein J; Javaid S; Stivers P; Zhang J; Qu Y; Joyce-Shaikh B; Loboda A; Zhang C; Meehl M; Chiang DY; Ranganath SH; Rosenzweig M; Brandish PE
    Mol Cancer Res; 2021 Apr; 19(4):702-716. PubMed ID: 33372059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prostaglanin-E2 Potentiates the Suppressive Functions of Human Mononuclear Myeloid-Derived Suppressor Cells and Increases Their Capacity to Expand IL-10-Producing Regulatory T Cell Subsets.
    Tomić S; Joksimović B; Bekić M; Vasiljević M; Milanović M; Čolić M; Vučević D
    Front Immunol; 2019; 10():475. PubMed ID: 30936876
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elevated levels of polymorphonuclear myeloid-derived suppressor cells in patients with glioblastoma highly express S100A8/9 and arginase and suppress T cell function.
    Gielen PR; Schulte BM; Kers-Rebel ED; Verrijp K; Bossman SA; Ter Laan M; Wesseling P; Adema GJ
    Neuro Oncol; 2016 Sep; 18(9):1253-64. PubMed ID: 27006175
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical Relevance and Suppressive Capacity of Human Myeloid-Derived Suppressor Cell Subsets.
    Lang S; Bruderek K; Kaspar C; Höing B; Kanaan O; Dominas N; Hussain T; Droege F; Eyth C; Hadaschik B; Brandau S
    Clin Cancer Res; 2018 Oct; 24(19):4834-4844. PubMed ID: 29914893
    [No Abstract]   [Full Text] [Related]  

  • 15. Immunosuppressive myeloid-derived suppressor cells are increased in splenocytes from cancer patients.
    Jordan KR; Kapoor P; Spongberg E; Tobin RP; Gao D; Borges VF; McCarter MD
    Cancer Immunol Immunother; 2017 Apr; 66(4):503-513. PubMed ID: 28108766
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conditioned media from the renal cell carcinoma cell line 786.O drives human blood monocytes to a monocytic myeloid-derived suppressor cell phenotype.
    Okada SL; Simmons RM; Franke-Welch S; Nguyen TH; Korman AJ; Dillon SR; Gilbertson DG
    Cell Immunol; 2018 Jan; 323():49-58. PubMed ID: 29103587
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human splenic myeloid derived suppressor cells: Phenotypic and clustering analysis.
    Cole KE; Ly QP; Hollingsworth MA; Cox JL; Padussis JC; Foster JM; Vargas LM; Talmadge JE
    Cell Immunol; 2021 May; 363():104317. PubMed ID: 33714729
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CD33
    Sun Y; Shao J; Jiang F; Wang Y; Yan Q; Yu N; Zhang J; Zhang J; Li M; He Y
    Am J Reprod Immunol; 2019 Jan; 81(1):e13067. PubMed ID: 30375700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. TAM Family Receptor Kinase Inhibition Reverses MDSC-Mediated Suppression and Augments Anti-PD-1 Therapy in Melanoma.
    Holtzhausen A; Harris W; Ubil E; Hunter DM; Zhao J; Zhang Y; Zhang D; Liu Q; Wang X; Graham DK; Frye SV; Earp HS
    Cancer Immunol Res; 2019 Oct; 7(10):1672-1686. PubMed ID: 31451482
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Circulating Myeloid-Derived Suppressor Cell Subsets in Patients with Colorectal Cancer - Exploratory Analysis of Their Biomarker Potential.
    Fědorová L; Pilátová K; Selingerová I; Bencsiková B; Budinská E; Zwinsová B; Brychtová V; Langrová M; Šefr R; Valík D; Zdražilová Dubská L
    Klin Onkol; 2018; 31(Suppl 2):88-92. PubMed ID: 31023030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.