These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 32068830)

  • 1. Insect-Symbiont Gene Expression in the Midgut Bacteriocytes of a Blood-Sucking Parasite.
    Husnik F; Hypsa V; Darby A
    Genome Biol Evol; 2020 Apr; 12(4):429-442. PubMed ID: 32068830
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenophonus and Sodalis Symbionts in Louse Flies: an Analogy to the Wigglesworthia and Sodalis System in Tsetse Flies.
    Nováková E; Husník F; Šochová E; Hypša V
    Appl Environ Microbiol; 2015 Sep; 81(18):6189-99. PubMed ID: 26150448
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Host-symbiont co-speciation and reductive genome evolution in gut symbiotic bacteria of acanthosomatid stinkbugs.
    Kikuchi Y; Hosokawa T; Nikoh N; Meng XY; Kamagata Y; Fukatsu T
    BMC Biol; 2009 Jan; 7():2. PubMed ID: 19146674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome analysis of "
    Koga R; Moriyama M; Nozaki T; Fukatsu T
    Front Microbiol; 2023; 14():1336919. PubMed ID: 38318130
    [TBL] [Abstract][Full Text] [Related]  

  • 5.
    Šochová E; Husník F; Nováková E; Halajian A; Hypša V
    PeerJ; 2017; 5():e4099. PubMed ID: 29250466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reductive genome evolution, host-symbiont co-speciation and uterine transmission of endosymbiotic bacteria in bat flies.
    Hosokawa T; Nikoh N; Koga R; Satô M; Tanahashi M; Meng XY; Fukatsu T
    ISME J; 2012 Mar; 6(3):577-87. PubMed ID: 21938025
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Phylogeny and potential transmission routes of midgut-associated endosymbionts of tsetse (Diptera:Glossinidae).
    Aksoy S; Chen X; Hypsa V
    Insect Mol Biol; 1997 May; 6(2):183-90. PubMed ID: 9099582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular evidence of bacteria in Melophagus ovinus sheep keds and Hippobosca equina forest flies collected from sheep and horses in northeastern Algeria.
    Boucheikhchoukh M; Mechouk N; Benakhla A; Raoult D; Parola P
    Comp Immunol Microbiol Infect Dis; 2019 Aug; 65():103-109. PubMed ID: 31300097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genome sequence of Candidatus Arsenophonus lipopteni, the exclusive symbiont of a blood sucking fly Lipoptena cervi (Diptera: Hippoboscidae).
    Nováková E; Hypša V; Nguyen P; Husník F; Darby AC
    Stand Genomic Sci; 2016; 11():72. PubMed ID: 27660670
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Candidatus Sodalis melophagi sp. nov.: phylogenetically independent comparative model to the tsetse fly symbiont Sodalis glossinidius.
    Chrudimský T; Husník F; Nováková E; Hypša V
    PLoS One; 2012; 7(7):e40354. PubMed ID: 22815743
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Compartmentalized into Bacteriocytes but Highly Invasive: the Puzzling Case of the Co-Obligate Symbiont Serratia symbiotica in the Aphid
    Renoz F; Lopes MR; Gaget K; Duport G; Eloy MC; Geelhand de Merxem B; Hance T; Calevro F
    Microbiol Spectr; 2022 Jun; 10(3):e0045722. PubMed ID: 35647657
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolutionary Dynamics of Host Organs for Microbial Symbiosis in Tortoise Leaf Beetles (Coleoptera: Chrysomelidae: Cassidinae).
    Fukumori K; Oguchi K; Ikeda H; Shinohara T; Tanahashi M; Moriyama M; Koga R; Fukatsu T
    mBio; 2022 Feb; 13(1):e0369121. PubMed ID: 35073753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coevolution of Metabolic Pathways in Blattodea and Their
    Kinjo Y; Bourguignon T; Hongoh Y; Lo N; Tokuda G; Ohkuma M
    Microbiol Spectr; 2022 Oct; 10(5):e0277922. PubMed ID: 36094208
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differential genome evolution between companion symbionts in an insect-bacterial symbiosis.
    Bennett GM; McCutcheon JP; MacDonald BR; Romanovicz D; Moran NA
    mBio; 2014 Sep; 5(5):e01697-14. PubMed ID: 25271287
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamic recruitment of amino acid transporters to the insect/symbiont interface.
    Duncan RP; Husnik F; Van Leuven JT; Gilbert DG; Dávalos LM; McCutcheon JP; Wilson ACC
    Mol Ecol; 2014 Mar; 23(6):1608-1623. PubMed ID: 24528556
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Acquisition and Loss of Dual-Obligate Symbionts in the Plant-Sap-Feeding Adelgidae (Hemiptera: Sternorrhyncha: Aphidoidea).
    von Dohlen CD; Spaulding U; Patch KB; Weglarz KM; Foottit RG; Havill NP; Burke GR
    Front Microbiol; 2017; 8():1037. PubMed ID: 28659877
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Symbiont Acquisition and Replacement as a Source of Ecological Innovation.
    Sudakaran S; Kost C; Kaltenpoth M
    Trends Microbiol; 2017 May; 25(5):375-390. PubMed ID: 28336178
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evolution, multiple acquisition, and localization of endosymbionts in bat flies (Diptera: Hippoboscoidea: Streblidae and Nycteribiidae).
    Morse SF; Bush SE; Patterson BD; Dick CW; Gruwell ME; Dittmar K
    Appl Environ Microbiol; 2013 May; 79(9):2952-61. PubMed ID: 23435889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phylogenetic Evidence for Ancient and Persistent Environmental Symbiont Reacquisition in Largidae (Hemiptera: Heteroptera).
    Gordon ER; McFrederick Q; Weirauch C
    Appl Environ Microbiol; 2016 Dec; 82(24):7123-7133. PubMed ID: 27694238
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The evolutionary development of plant-feeding insects and their nutritional endosymbionts.
    Skidmore IH; Hansen AK
    Insect Sci; 2017 Dec; 24(6):910-928. PubMed ID: 28371395
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.