These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 32068909)
1. A comparison of prostate cancer cell transcriptomes in 2D monoculture vs 3D xenografts identify consistent gene expression alterations associated with tumor microenvironments. Brady L; Gil da Costa RM; Coleman IM; Matson CK; Risk MC; Coleman RT; Nelson PS Prostate; 2020 May; 80(6):491-499. PubMed ID: 32068909 [TBL] [Abstract][Full Text] [Related]
2. Gene and miRNA expression signature of Lewis lung carcinoma LLC1 cells in extracellular matrix enriched microenvironment. Stankevicius V; Vasauskas G; Bulotiene D; Butkyte S; Jarmalaite S; Rotomskis R; Suziedelis K BMC Cancer; 2016 Oct; 16(1):789. PubMed ID: 27729023 [TBL] [Abstract][Full Text] [Related]
3. The Volume of Three-Dimensional Cultures of Cancer Cells InVitro Influences Transcriptional Profile Differences and Similarities with Monolayer Cultures and Xenografted Tumors. Boghaert ER; Lu X; Hessler PE; McGonigal TP; Oleksijew A; Mitten MJ; Foster-Duke K; Hickson JA; Santo VE; Brito C; Uziel T; Vaidya KS Neoplasia; 2017 Sep; 19(9):695-706. PubMed ID: 28787674 [TBL] [Abstract][Full Text] [Related]
4. Transcriptome analysis of differentially expressed genes and pathways associated with mitoxantrone treatment prostate cancer. Li S; Li R; Ma Y; Zhang C; Huang T; Zhu S J Cell Mol Med; 2019 Mar; 23(3):1987-2000. PubMed ID: 30592148 [TBL] [Abstract][Full Text] [Related]
5. Tumour-associated glial host cells display a stem-like phenotype with a distinct gene expression profile and promote growth of GBM xenografts. Leiss L; Mutlu E; Øyan A; Yan T; Tsinkalovsky O; Sleire L; Petersen K; Rahman MA; Johannessen M; Mitra SS; Jacobsen HK; Talasila KM; Miletic H; Jonassen I; Li X; Brons NH; Kalland KH; Wang J; Enger PØ BMC Cancer; 2017 Feb; 17(1):108. PubMed ID: 28173797 [TBL] [Abstract][Full Text] [Related]
6. Gene expression profiles of prostate cancer stem cells isolated by aldehyde dehydrogenase activity assay. Nishida S; Hirohashi Y; Torigoe T; Kitamura H; Takahashi A; Masumori N; Tsukamoto T; Sato N J Urol; 2012 Jul; 188(1):294-9. PubMed ID: 22608744 [TBL] [Abstract][Full Text] [Related]
7. Transcriptomic Analysis of LNCaP Tumor Xenograft to Elucidate the Components and Mechanisms Contributed by Tumor Environment as Targets for Dietary Prostate Cancer Prevention Studies. Yu L; Li RW; Huang H; Pham Q; Yu L; Wang TTY Nutrients; 2021 Mar; 13(3):. PubMed ID: 33808801 [TBL] [Abstract][Full Text] [Related]
8. Severe combined immunodeficient-hu model of human prostate cancer metastasis to human bone. Nemeth JA; Harb JF; Barroso U; He Z; Grignon DJ; Cher ML Cancer Res; 1999 Apr; 59(8):1987-93. PubMed ID: 10213511 [TBL] [Abstract][Full Text] [Related]
9. RNA interference targeting PSCA suppresses primary tumor growth and metastasis formation of human prostate cancer xenografts in SCID mice. Zhao Z; He J; Kang R; Zhao S; Liu L; Li F Prostate; 2016 Feb; 76(2):184-98. PubMed ID: 26477693 [TBL] [Abstract][Full Text] [Related]
10. Heterogeneity of molecular targets on clonal cancer lines derived from a novel hormone-refractory prostate cancer tumor system. Freedland SJ; Pantuck AJ; Paik SH; Zisman A; Graeber TG; Eisenberg D; McBride WH; Nguyen D; Tso CL; Belldegrun AS Prostate; 2003 Jun; 55(4):299-307. PubMed ID: 12712409 [TBL] [Abstract][Full Text] [Related]
11. A novel mouse model of human prostate cancer to study intraprostatic tumor growth and the development of lymph node metastases. Linxweiler J; Körbel C; Müller A; Hammer M; Veith C; Bohle RM; Stöckle M; Junker K; Menger MD; Saar M Prostate; 2018 Jun; 78(9):664-675. PubMed ID: 29572953 [TBL] [Abstract][Full Text] [Related]
12. Establishing human prostate cancer cell xenografts in bone: induction of osteoblastic reaction by prostate-specific antigen-producing tumors in athymic and SCID/bg mice using LNCaP and lineage-derived metastatic sublines. Wu TT; Sikes RA; Cui Q; Thalmann GN; Kao C; Murphy CF; Yang H; Zhau HE; Balian G; Chung LW Int J Cancer; 1998 Sep; 77(6):887-94. PubMed ID: 9714059 [TBL] [Abstract][Full Text] [Related]
13. YKL-40 protein expression in human tumor samples and human tumor cell line xenografts: implications for its use in tumor models. Böckelmann LC; Felix T; Calabrò S; Schumacher U Cell Oncol (Dordr); 2021 Oct; 44(5):1183-1195. PubMed ID: 34432260 [TBL] [Abstract][Full Text] [Related]
14. TLR9 signaling through NF-κB/RELA and STAT3 promotes tumor-propagating potential of prostate cancer cells. Moreira D; Zhang Q; Hossain DM; Nechaev S; Li H; Kowolik CM; D'Apuzzo M; Forman S; Jones J; Pal SK; Kortylewski M Oncotarget; 2015 Jul; 6(19):17302-13. PubMed ID: 26046794 [TBL] [Abstract][Full Text] [Related]
15. Stromal cells promote angiogenesis and growth of human prostate tumors in a differential reactive stroma (DRS) xenograft model. Tuxhorn JA; McAlhany SJ; Dang TD; Ayala GE; Rowley DR Cancer Res; 2002 Jun; 62(11):3298-307. PubMed ID: 12036948 [TBL] [Abstract][Full Text] [Related]
16. Mitochondrial DNA mutation stimulates prostate cancer growth in bone stromal environment. Arnold RS; Sun CQ; Richards JC; Grigoriev G; Coleman IM; Nelson PS; Hsieh CL; Lee JK; Xu Z; Rogatko A; Osunkoya AO; Zayzafoon M; Chung L; Petros JA Prostate; 2009 Jan; 69(1):1-11. PubMed ID: 18850577 [TBL] [Abstract][Full Text] [Related]
17. A 3D in vitro model of patient-derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Fong EL; Wan X; Yang J; Morgado M; Mikos AG; Harrington DA; Navone NM; Farach-Carson MC Biomaterials; 2016 Jan; 77():164-72. PubMed ID: 26599623 [TBL] [Abstract][Full Text] [Related]
18. A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. Lee AR; Gan Y; Tang Y; Dong X EBioMedicine; 2018 Sep; 35():167-177. PubMed ID: 30100395 [TBL] [Abstract][Full Text] [Related]
19. Whole transcriptome profiling of patient-derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Bradford JR; Wappett M; Beran G; Logie A; Delpuech O; Brown H; Boros J; Camp NJ; McEwen R; Mazzola AM; D'Cruz C; Barry ST Oncotarget; 2016 Apr; 7(15):20773-87. PubMed ID: 26980748 [TBL] [Abstract][Full Text] [Related]
20. Gene expression in the LNCaP human prostate cancer progression model: progression associated expression in vitro corresponds to expression changes associated with prostate cancer progression in vivo. Chen Q; Watson JT; Marengo SR; Decker KS; Coleman I; Nelson PS; Sikes RA Cancer Lett; 2006 Dec; 244(2):274-88. PubMed ID: 16500022 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]