These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

373 related articles for article (PubMed ID: 32068922)

  • 41. Simultaneous Passivation of Bulk and Interface Defects with Gradient 2D/3D Heterojunction Engineering for Efficient and Stable Perovskite Solar Cells.
    Liu B; Hu J; He D; Bai L; Zhou Q; Wang W; Xu C; Song Q; Lee D; Zhao P; Hao F; Niu X; Zang Z; Chen J
    ACS Appl Mater Interfaces; 2022 May; 14(18):21079-21088. PubMed ID: 35486118
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Buried-Interface Engineering Enables Efficient and 1960-Hour ISOS-L-2I Stable Inverted Perovskite Solar Cells.
    Li L; Wei M; Carnevali V; Zeng H; Zeng M; Liu R; Lempesis N; Eickemeyer FT; Luo L; Agosta L; Dankl M; Zakeeruddin SM; Roethlisberger U; Grätzel M; Rong Y; Li X
    Adv Mater; 2024 Mar; 36(13):e2303869. PubMed ID: 37632843
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enhanced Thermal Stability of Planar Perovskite Solar Cells Through Triphenylphosphine Interface Passivation.
    Thambidurai M; Omer MI; Shini F; Dewi HA; Jamaludin NF; Koh TM; Tang X; Mathews N; Dang C
    ChemSusChem; 2022 Apr; 15(8):e202102189. PubMed ID: 35289479
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Charge extraction via graded doping of hole transport layers gives highly luminescent and stable metal halide perovskite devices.
    Abdi-Jalebi M; Ibrahim Dar M; Senanayak SP; Sadhanala A; Andaji-Garmaroudi Z; Pazos-Outón LM; Richter JM; Pearson AJ; Sirringhaus H; Grätzel M; Friend RH
    Sci Adv; 2019 Feb; 5(2):eaav2012. PubMed ID: 30793032
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient and Stable Carbon-Based Perovskite Solar Cells via Passivation by a Multifunctional Hydrophobic Molecule with Bidentate Anchors.
    Xu T; Zou K; Lv S; Tang H; Zhang Y; Chen Y; Chen L; Li Z; Huang W
    ACS Appl Mater Interfaces; 2021 Apr; 13(14):16485-16497. PubMed ID: 33783198
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Powder Pressed Cuprous Iodide (CuI) as A Hole Transporting Material for Perovskite Solar Cells.
    Uthayaraj S; Karunarathne DGBC; Kumara GRA; Murugathas T; Rasalingam S; Rajapakse RMG; Ravirajan P; Velauthapillai D
    Materials (Basel); 2019 Jun; 12(13):. PubMed ID: 31247886
    [TBL] [Abstract][Full Text] [Related]  

  • 47. PEAI-Based Interfacial Layer for High-Efficiency and Stable Solar Cells Based on a MACl-Mediated Grown FA
    Zhu T; Zheng D; Liu J; Coolen L; Pauporté T
    ACS Appl Mater Interfaces; 2020 Aug; 12(33):37197-37207. PubMed ID: 32814384
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Nanoscale interfacial engineering enables highly stable and efficient perovskite photovoltaics.
    Krishna A; Zhang H; Zhou Z; Gallet T; Dankl M; Ouellette O; Eickemeyer FT; Fu F; Sanchez S; Mensi M; Zakeeruddin SM; Rothlisberger U; Manjunatha Reddy GN; Redinger A; Grätzel M; Hagfeldt A
    Energy Environ Sci; 2021 Oct; 14(10):5552-5562. PubMed ID: 34745345
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Engineering of Electron Extraction and Defect Passivation via Anion-Doped Conductive Fullerene Derivatives as Interlayers for Efficient Invert Perovskite Solar Cells.
    Zheng T; Fan L; Zhou H; Zhao Y; Jin B; Peng R
    ACS Appl Mater Interfaces; 2020 Jun; 12(22):24747-24755. PubMed ID: 32407074
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Surface Reconstruction with Aprotic Trimethylsulfonium Iodide for Efficient and Stable Perovskite Solar Cells.
    Sandhu S; Rahman MM; Yadagiri B; Kaliamurthy AK; Mensah AE; Lima FJ; Ahmed S; Park J; Kumar M; Lee JJ
    ACS Appl Mater Interfaces; 2024 Jan; 16(3):4169-4180. PubMed ID: 38193456
    [TBL] [Abstract][Full Text] [Related]  

  • 51. p-Phenylenediaminium iodide capping agent enabled self-healing perovskite solar cell.
    Zardari P; Rostami A; Shekaari H
    Sci Rep; 2020 Nov; 10(1):20011. PubMed ID: 33203962
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Aluminum-Doped Zinc Oxide as Highly Stable Electron Collection Layer for Perovskite Solar Cells.
    Zhao X; Shen H; Zhang Y; Li X; Zhao X; Tai M; Li J; Li J; Li X; Lin H
    ACS Appl Mater Interfaces; 2016 Mar; 8(12):7826-33. PubMed ID: 26960451
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Hysteresis-Free Planar Perovskite Solar Cells with a Breakthrough Efficiency of 22% and Superior Operational Stability over 2000 h.
    Akin S
    ACS Appl Mater Interfaces; 2019 Oct; 11(43):39998-40005. PubMed ID: 31596065
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Highly Stable Perovskite Solar Cells Based on the Efficient Interaction between Pb
    Duan H; Lin Z; Xu X; Song Q; Dong H; Gao X; Mu C; Ouyang X
    Chemistry; 2023 Dec; 29(71):e202302703. PubMed ID: 37857570
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rational Strategies for Efficient Perovskite Solar Cells.
    Seo J; Noh JH; Seok SI
    Acc Chem Res; 2016 Mar; 49(3):562-72. PubMed ID: 26950188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells with ZnO as Electron-Transport Layer: Effect of Surface Passivation.
    Cao J; Wu B; Chen R; Wu Y; Hui Y; Mao BW; Zheng N
    Adv Mater; 2018 Mar; 30(11):. PubMed ID: 29349858
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Managing Excess Lead Iodide with Functionalized Oxo-Graphene Nanosheets for Stable Perovskite Solar Cells.
    Li G; Hu Y; Li M; Tang Y; Zhang Z; Musiienko A; Cao Q; Akhundova F; Li J; Prashanthan K; Yang F; Janasik P; Appiah ANS; Trofimov S; Livakas N; Zuo S; Wu L; Wang L; Yang Y; Agyei-Tuffour B; MacQueen RW; Naydenov B; Unold T; Unger E; Aktas E; Eigler S; Abate A
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202307395. PubMed ID: 37522562
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Hexylammonium Iodide Derived Two-Dimensional Perovskite as Interfacial Passivation Layer in Efficient Two-Dimensional/Three-Dimensional Perovskite Solar Cells.
    Lv Y; Song X; Yin Y; Feng Y; Ma H; Hao C; Jin S; Shi Y
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):698-705. PubMed ID: 31815408
    [TBL] [Abstract][Full Text] [Related]  

  • 59. When Aggregation-Induced Emission Meets Perovskites: Efficient Defect-Passivation and Charge-Transfer for Ambient Fabrication of Perovskite Solar Cells.
    Gu N; Zhang P; Song L; Du P; Ning L; Buregeya Ingabire P; Chen WH; Wang Y; Xiong J
    Chemistry; 2022 Aug; 28(43):e202200850. PubMed ID: 35587563
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Synchronous Interface Modification and Bulk Passivation via a One-Step Cesium Bromide Diffusion Process for Highly Efficient Perovskite Solar Cells.
    Pang S; Zhang C; Dong H; Zhang Z; Chen D; Zhu W; Chang J; Lin Z; Zhang J; Hao Y
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):10110-10119. PubMed ID: 33606489
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.