These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 32069405)

  • 1. Zwitterionic Cellulose Nanofibrils with High Salt Sensitivity and Tolerance.
    Wang A; Yuan Z; Wang C; Luo L; Zhang W; Geng S; Qu J; Wei B; Wen Y
    Biomacromolecules; 2020 Apr; 21(4):1471-1479. PubMed ID: 32069405
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of cellulose nanofibrils from dry softwood pulp using high shear homogenization.
    Zhao J; Zhang W; Zhang X; Zhang X; Lu C; Deng Y
    Carbohydr Polym; 2013 Sep; 97(2):695-702. PubMed ID: 23911503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surfactant controlled zwitterionic cellulose nanofibril dispersions.
    Calabrese V; da Silva MA; Schmitt J; Muñoz-Garcia JC; Gabrielli V; Scott JL; Angulo J; Khimyak YZ; Edler KJ
    Soft Matter; 2018 Oct; 14(38):7793-7800. PubMed ID: 30109338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose nanofibrils (CNFs) in uniform diameter: Capturing the impact of carboxyl group on dispersion and Re-dispersion of CNFs suspensions.
    Zai Z; Yan M; Shi C; Zhang L; Lu H; Xiong Z; Ma J
    Int J Biol Macromol; 2022 May; 207():23-30. PubMed ID: 35248603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications.
    Bakkari ME; Bindiganavile V; Goncalves J; Boluk Y
    Carbohydr Polym; 2019 Jan; 203():238-245. PubMed ID: 30318209
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S; Yue N; Cui M; Penkova A; Huang R; Qi W; He Z; Su R
    Carbohydr Polym; 2022 Oct; 294():119803. PubMed ID: 35868763
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions.
    Wu J; Zhu W; Shi X; Li Q; Huang C; Tian Y; Wang S
    Carbohydr Polym; 2020 May; 236():115999. PubMed ID: 32172833
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation and characterization of cellulose nanofibrils from wheat straw using steam explosion coupled with high shear homogenization.
    Kaushik A; Singh M
    Carbohydr Res; 2011 Jan; 346(1):76-85. PubMed ID: 21094489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Novel Biosorbent From Hardwood Cellulose Nanofibrils Grafted With Poly(
    Yu YH; An L; Bae JH; Heo JW; Chen J; Jeong H; Kim YS
    Front Bioeng Biotechnol; 2021; 9():682070. PubMed ID: 34079792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conductive biomass-based composite wires with cross-linked anionic nanocellulose and cationic nanochitin as scaffolds.
    Xu J; Zhou Z; Cai J; Tian J
    Int J Biol Macromol; 2020 Aug; 156():1183-1190. PubMed ID: 31756476
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanofibrils (CNFs) from Ammophila arenaria, a natural and a fast growing grass plant.
    Jebali Z; Nabili A; Majdoub H; Boufi S
    Int J Biol Macromol; 2018 Feb; 107(Pt A):530-536. PubMed ID: 28911807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of a bio-based ink made of cross-linked cellulose nanofibrils with various metal cations.
    Mietner JB; Jiang X; Edlund U; Saake B; Navarro JRG
    Sci Rep; 2021 Mar; 11(1):6461. PubMed ID: 33742068
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of Cellulose Nanofibrils and TEMPO-mediated Oxidized Cellulose Nanofibrils on the Physical and Mechanical Properties of Poly(vinylidene fluoride)/Cellulose Nanofibril Composites.
    Barnes E; Jefcoat JA; Alberts EM; McKechnie MA; Peel HR; Buchanan JP; Weiss CA; Klaus KL; Mimun LC; Warner CM
    Polymers (Basel); 2019 Jun; 11(7):. PubMed ID: 31252644
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Nanofibrillated Cellulose by Combined Ammonium Persulphate Treatment with Ultrasound and Mechanical Processing.
    Filipova I; Fridrihsone V; Cabulis U; Berzins A
    Nanomaterials (Basel); 2018 Aug; 8(9):. PubMed ID: 30134631
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.
    Tian C; Yi J; Wu Y; Wu Q; Qing Y; Wang L
    Carbohydr Polym; 2016 Jan; 136():485-92. PubMed ID: 26572379
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R; Saito T; Okita Y; Isogai A
    Biomacromolecules; 2012 Mar; 13(3):842-9. PubMed ID: 22276990
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cationic nanofibrillar cellulose with high antibacterial properties.
    Chaker A; Boufi S
    Carbohydr Polym; 2015 Oct; 131():224-32. PubMed ID: 26256179
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation of Self-supporting Bagasse Cellulose Nanofibrils Hydrogels Induced by Zinc Ions.
    Lu P; Liu R; Liu X; Wu M
    Nanomaterials (Basel); 2018 Oct; 8(10):. PubMed ID: 30297645
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellulose nanofibrils prepared by twin-screw extrusion: Effect of the fiber pretreatment on the fibrillation efficiency.
    Trigui K; De Loubens C; Magnin A; Putaux JL; Boufi S
    Carbohydr Polym; 2020 Jul; 240():116342. PubMed ID: 32475596
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B; Hassan EB; Schilling MW; Mahmoud B
    Carbohydr Polym; 2016 Oct; 151():779-789. PubMed ID: 27474625
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.