These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 32069409)

  • 1. How Dissociation of Carboxylic Acid Groups in a Weak Polyelectrolyte Brush Depend on Their Distance from the Substrate.
    Ehtiati K; Moghaddam SZ; Daugaard AE; Thormann E
    Langmuir; 2020 Mar; 36(9):2339-2348. PubMed ID: 32069409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH- and Electro-Responsive Properties of Poly(acrylic acid) and Poly(acrylic acid)-block-poly(acrylic acid-grad-styrene) Brushes Studied by Quartz Crystal Microbalance with Dissipation Monitoring.
    Borisova OV; Billon L; Richter RP; Reimhult E; Borisov OV
    Langmuir; 2015 Jul; 31(27):7684-94. PubMed ID: 26070329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction of Proteins with a Planar Poly(acrylic acid) Brush: Analysis by Quartz Crystal Microbalance with Dissipation Monitoring (QCM-D).
    Walkowiak J; Gradzielski M; Zauscher S; Ballauff M
    Polymers (Basel); 2020 Dec; 13(1):. PubMed ID: 33396873
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Salt- and pH-induced swelling of a poly(acrylic acid) brush via quartz crystal microbalance w/dissipation (QCM-D).
    Hollingsworth NR; Wilkanowicz SI; Larson RG
    Soft Matter; 2019 Oct; 15(39):7838-7851. PubMed ID: 31528970
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ studies on the switching behavior of ultrathin poly(acrylic acid) polyelectrolyte brushes in different aqueous environments.
    Aulich D; Hoy O; Luzinov I; Brücher M; Hergenröder R; Bittrich E; Eichhorn KJ; Uhlmann P; Stamm M; Esser N; Hinrichs K
    Langmuir; 2010 Aug; 26(15):12926-32. PubMed ID: 20602533
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quartz crystal microbalance study of ionic strength and pH-dependent polymer conformation and protein adsorption/desorption on PAA, PEO, and mixed PEO/PAA brushes.
    Delcroix MF; Demoustier-Champagne S; Dupont-Gillain CC
    Langmuir; 2014 Jan; 30(1):268-77. PubMed ID: 24328402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Protein adsorption on and swelling of polyelectrolyte brushes: A simultaneous ellipsometry-quartz crystal microbalance study.
    Bittrich E; Rodenhausen KB; Eichhorn KJ; Hofmann T; Schubert M; Stamm M; Uhlmann P
    Biointerphases; 2010 Dec; 5(4):159-67. PubMed ID: 21219037
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Weak polyelectrolyte brushes: re-entrant swelling and self-organization.
    Senechal V; Saadaoui H; Vargas-Alfredo N; Rodriguez-Hernandez J; Drummond C
    Soft Matter; 2020 Aug; 16(33):7727-7738. PubMed ID: 32735003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Friction and adhesion control between adsorbed layers of polyelectrolyte brush-grafted nanoparticles via pH-triggered bridging interactions.
    Riley JK; Matyjaszewski K; Tilton RD
    J Colloid Interface Sci; 2018 Sep; 526():114-123. PubMed ID: 29723792
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational behavior of grafted weak polyelectrolyte chains: effects of counterion condensation and nonelectrostatic anion adsorption.
    Wang X; Liu G; Zhang G
    Langmuir; 2011 Aug; 27(16):9895-901. PubMed ID: 21774468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-chain-in-mean-field simulations of weak polyelectrolyte brushes.
    Léonforte F; Welling U; Müller M
    J Chem Phys; 2016 Dec; 145(22):224902. PubMed ID: 27984879
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical and structural changes in a pH-responsive mixed polyelectrolyte brush studied by infrared ellipsometry.
    Hinrichs K; Aulich D; Ionov L; Esser N; Eichhorn KJ; Motornov M; Stamm M; Minko S
    Langmuir; 2009 Sep; 25(18):10987-91. PubMed ID: 19572506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dissociation behavior of weak polyelectrolyte brushes on a planar surface.
    Dong R; Lindau M; Ober CK
    Langmuir; 2009 Apr; 25(8):4774-9. PubMed ID: 19243153
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Born energy, acid-base equilibrium, structure and interactions of end-grafted weak polyelectrolyte layers.
    Nap RJ; Tagliazucchi M; Szleifer I
    J Chem Phys; 2014 Jan; 140(2):024910. PubMed ID: 24437914
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of Salt on Phosphorylcholine-based Zwitterionic Polymer Brushes.
    Zhang Z; Moxey M; Alswieleh A; Morse AJ; Lewis AL; Geoghegan M; Leggett GJ
    Langmuir; 2016 May; 32(20):5048-57. PubMed ID: 27133955
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and swelling behavior of pH-responsive polybase brushes.
    Sanjuan S; Perrin P; Pantoustier N; Tran Y
    Langmuir; 2007 May; 23(10):5769-78. PubMed ID: 17425342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Critical salt effects in the swelling behavior of a weak polybasic brush.
    Willott JD; Murdoch TJ; Humphreys BA; Edmondson S; Webber GB; Wanless EJ
    Langmuir; 2014 Feb; 30(7):1827-36. PubMed ID: 24476028
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring the Switching of Single BSA-ATTO 488 Molecules Covalently End-Attached to a pH-Responsive PAA Brush.
    Akkilic N; Molenaar R; Claessens MM; Blum C; de Vos WM
    Langmuir; 2016 Sep; 32(35):8803-11. PubMed ID: 27525503
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrokinetic characterization of poly(acrylic acid) and poly(ethylene oxide) brushes in aqueous electrolyte solutions.
    Zimmermann R; Norde W; Cohen Stuart MA; Werner C
    Langmuir; 2005 May; 21(11):5108-14. PubMed ID: 15896058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interaction of calmodulin with poly(acrylic acid) brushes: Effects of high pressure, pH-value and ligand binding.
    Levin A; Czeslik C
    Colloids Surf B Biointerfaces; 2018 Nov; 171():478-484. PubMed ID: 30077905
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.