BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 32069419)

  • 1. Nanochaperones Mediated Delivery of Insulin.
    Li C; Liu X; Zhang Y; Lv J; Huang F; Wu G; Liu Y; Ma R; An Y; Shi L
    Nano Lett; 2020 Mar; 20(3):1755-1765. PubMed ID: 32069419
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glucose-Responsive Nanochaperones Mediate Exendin-4 Delivery for Enhancing Therapeutic Effects.
    Zhang Y; Yang M; Wu X; Deng F; Yin X; Ma R; Shi L
    ACS Appl Mater Interfaces; 2022 Oct; 14(39):44211-44221. PubMed ID: 36153949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthetic Nanochaperones Facilitate Refolding of Denatured Proteins.
    Ma FH; An Y; Wang J; Song Y; Liu Y; Shi L
    ACS Nano; 2017 Oct; 11(10):10549-10557. PubMed ID: 28968070
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Balance Between Capture and Release: How Nanochaperones Regulate Refolding of Thermally Denatured Proteins.
    Ma F; Wu X; Li A; Xu L; An Y; Shi L
    Angew Chem Int Ed Engl; 2021 May; 60(19):10865-10870. PubMed ID: 33595165
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glucose and H
    Li C; Liu X; Liu Y; Huang F; Wu G; Liu Y; Zhang Z; Ding Y; Lv J; Ma R; An Y; Shi L
    Nanoscale; 2019 May; 11(18):9163-9175. PubMed ID: 31038150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stimuli-responsive self-assembled dendrimers for oral protein delivery.
    Zeng Z; Qi D; Yang L; Liu J; Tang Y; Chen H; Feng X
    J Control Release; 2019 Dec; 315():206-213. PubMed ID: 31672623
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose-responsive complex micelles for self-regulated delivery of insulin with effective protection of insulin and enhanced hypoglycemic activity in vivo.
    Wu G; Li C; Liu X; Lv J; Ding Y; Liu Y; Liu Y; Huang F; Shi L; An Y; Ma R
    Colloids Surf B Biointerfaces; 2019 Aug; 180():376-383. PubMed ID: 31082775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose- and temperature-sensitive nanoparticles for insulin delivery.
    Wu JZ; Williams GR; Li HY; Wang D; Wu H; Li SD; Zhu LM
    Int J Nanomedicine; 2017; 12():4037-4057. PubMed ID: 28603417
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and in vivo evaluation of an oral insulin-PEG delivery system.
    Calceti P; Salmaso S; Walker G; Bernkop-Schnürch A
    Eur J Pharm Sci; 2004 Jul; 22(4):315-23. PubMed ID: 15196588
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of self-cooperative nanochaperones with enhanced activity to facilitate protein refolding.
    Yang M; Zhang Y; Deng F; Wu X; Chen Y; Ma F; Shi L
    Mater Horiz; 2023 Nov; 10(12):5547-5554. PubMed ID: 37843027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An injectable particle-hydrogel hybrid system for glucose-regulatory insulin delivery.
    Zhao F; Wu D; Yao D; Guo R; Wang W; Dong A; Kong D; Zhang J
    Acta Biomater; 2017 Dec; 64():334-345. PubMed ID: 28974477
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing thermal stability of a highly concentrated insulin formulation with Pluronic F-127 for long-term use in microfabricated implantable devices.
    Li J; Chu MK; Lu B; Mirzaie S; Chen K; Gordijo CR; Plettenburg O; Giacca A; Wu XY
    Drug Deliv Transl Res; 2017 Aug; 7(4):529-543. PubMed ID: 28429276
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sugar-based amphiphilic polymers for biomedical applications: from nanocarriers to therapeutics.
    Gu L; Faig A; Abdelhamid D; Uhrich K
    Acc Chem Res; 2014 Oct; 47(10):2867-77. PubMed ID: 25141069
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microneedle-array patches loaded with hypoxia-sensitive vesicles provide fast glucose-responsive insulin delivery.
    Yu J; Zhang Y; Ye Y; DiSanto R; Sun W; Ranson D; Ligler FS; Buse JB; Gu Z
    Proc Natl Acad Sci U S A; 2015 Jul; 112(27):8260-5. PubMed ID: 26100900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Low molecular weight chitosan-insulin polyelectrolyte complex: characterization and stability studies.
    Al-Kurdi ZI; Chowdhry BZ; Leharne SA; Al Omari MM; Badwan AA
    Mar Drugs; 2015 Mar; 13(4):1765-84. PubMed ID: 25830681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On employing a translationally controlled tumor protein-derived protein transduction domain analog for transmucosal delivery of drugs.
    Bae HD; Lee K
    J Control Release; 2013 Sep; 170(3):358-64. PubMed ID: 23791976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formulation of two-layer dissolving polymeric microneedle patches for insulin transdermal delivery in diabetic mice.
    Lee IC; Lin WM; Shu JC; Tsai SW; Chen CH; Tsai MT
    J Biomed Mater Res A; 2017 Jan; 105(1):84-93. PubMed ID: 27539509
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protective properties of mesocellular silica foams against aggregation and enzymatic hydrolysis of loaded proteins for oral protein delivery.
    He Y; Wang M; Zhang H; Zhang Y; Gao Y; Wang S
    J Colloid Interface Sci; 2020 Feb; 560():690-700. PubMed ID: 31706652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and colloidal characterization of folic acid-modified PEG-b-PCL Micelles for methotrexate delivery.
    Brandt JV; Piazza RD; Dos Santos CC; Vega-Chacón J; Amantéa BE; Pinto GC; Magnani M; Piva HL; Tedesco AC; Primo FL; Jafelicci M; Marques RFC
    Colloids Surf B Biointerfaces; 2019 May; 177():228-234. PubMed ID: 30753959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral delivery of insulin using pH-responsive complexation gels.
    Lowman AM; Morishita M; Kajita M; Nagai T; Peppas NA
    J Pharm Sci; 1999 Sep; 88(9):933-7. PubMed ID: 10479357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.