These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 32069576)

  • 1. Analytical modeling of orientation effects in random nanowire networks.
    Jagota M; Scheinfeld I
    Phys Rev E; 2020 Jan; 101(1-1):012304. PubMed ID: 32069576
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrical conductivity of random metallic nanowire networks: an analytical consideration along with computer simulation.
    Tarasevich YY; Vodolazskaya IV; Eserkepov AV
    Phys Chem Chem Phys; 2022 May; 24(19):11812-11819. PubMed ID: 35507328
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predictive Model for the Electrical Transport within Nanowire Networks.
    Forró C; Demkó L; Weydert S; Vörös J; Tybrandt K
    ACS Nano; 2018 Nov; 12(11):11080-11087. PubMed ID: 30398851
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrathin hetero-nanowire-based flexible electronics with tunable conductivity.
    Liu JW; Huang WR; Gong M; Zhang M; Wang JL; Zheng J; Yu SH
    Adv Mater; 2013 Nov; 25(41):5910-5. PubMed ID: 23913762
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conductivity of Nanowire Arrays under Random and Ordered Orientation Configurations.
    Jagota M; Tansu N
    Sci Rep; 2015 May; 5():10219. PubMed ID: 25976936
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bridge percolation: electrical connectivity of discontinued conducting slabs by metallic nanowires.
    Baret A; Bardet L; Oser D; Langley DP; Balty F; Bellet D; Nguyen ND
    Nanoscale; 2024 May; 16(17):8361-8368. PubMed ID: 38323509
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical and network properties of flexible silver-nanowire composite electrodes under mechanical strain.
    Glier TE; Betker M; Witte M; Matsuyama T; Westphal L; Grimm-Lebsanft B; Biebl F; Akinsinde LO; Fischer F; Rübhausen M
    Nanoscale; 2020 Dec; 12(46):23831-23837. PubMed ID: 33237101
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational characterization and control of electrical conductivity of nanowire composite network under mechanical deformation.
    Hwang J; Sohn H; Lee SH
    Sci Rep; 2018 Nov; 8(1):16617. PubMed ID: 30413787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of nanowire length and diameter on the properties of transparent, conducting nanowire films.
    Bergin SM; Chen YH; Rathmell AR; Charbonneau P; Li ZY; Wiley BJ
    Nanoscale; 2012 Mar; 4(6):1996-2004. PubMed ID: 22349106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Computational Investigation of the Morphology, Efficiency, and Properties of Silver Nano Wires Networks in Transparent Conductive Film.
    Han F; Maloth T; Lubineau G; Yaldiz R; Tevtia A
    Sci Rep; 2018 Nov; 8(1):17494. PubMed ID: 30504783
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Very long Ag nanowire synthesis and its application in a highly transparent, conductive and flexible metal electrode touch panel.
    Lee J; Lee P; Lee H; Lee D; Lee SS; Ko SH
    Nanoscale; 2012 Oct; 4(20):6408-14. PubMed ID: 22952107
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrical percolation in quasi-two-dimensional metal nanowire networks for transparent conductors.
    Mutiso RM; Winey KI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Sep; 88(3):032134. PubMed ID: 24125240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of length dispersity and film fabrication on the sheet resistance of copper nanowire transparent conductors.
    Borchert JW; Stewart IE; Ye S; Rathmell AR; Wiley BJ; Winey KI
    Nanoscale; 2015 Sep; 7(34):14496-504. PubMed ID: 26260532
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conductivity control of as-grown branched indium tin oxide nanowire networks.
    Laforge JM; Cocker TL; Beaudry AL; Cui K; Tucker RT; Taschuk MT; Hegmann FA; Brett MJ
    Nanotechnology; 2014 Jan; 25(3):035701. PubMed ID: 24346484
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Silver nanowire/optical adhesive coatings as transparent electrodes for flexible electronics.
    Miller MS; O'Kane JC; Niec A; Carmichael RS; Carmichael TB
    ACS Appl Mater Interfaces; 2013 Oct; 5(20):10165-72. PubMed ID: 24007382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of Silver Nanowire and Preparation of Uniform, Highly Conductive Transparent Films on Flexible Substrate with Extremely Excellent Film Performance.
    Ding X; Huang Y
    J Nanosci Nanotechnol; 2017 Jan; 17(1):705-10. PubMed ID: 29633808
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens.
    Madaria AR; Kumar A; Zhou C
    Nanotechnology; 2011 Jun; 22(24):245201. PubMed ID: 21508460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metallic nanowire networks: effects of thermal annealing on electrical resistance.
    Langley DP; Lagrange M; Giusti G; Jiménez C; Bréchet Y; Nguyen ND; Bellet D
    Nanoscale; 2014 Nov; 6(22):13535-43. PubMed ID: 25267592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling nanoscale temperature gradients and conductivity evolution in pulsed light sintering of silver nanowire networks.
    Dexter M; Pfau A; Gao Z; Herman GS; Chang CH; Malhotra R
    Nanotechnology; 2018 Dec; 29(50):505205. PubMed ID: 30240361
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-cost fabrication of flexible transparent electrodes based on Al doped ZnO and silver nanowire nanocomposites: impact of the network density.
    Nguyen VH; Resende J; Papanastasiou DT; Fontanals N; Jiménez C; Muñoz-Rojas D; Bellet D
    Nanoscale; 2019 Jul; 11(25):12097-12107. PubMed ID: 31184671
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.