These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 32069586)

  • 1. Self-diffusion in a quasi-two-dimensional gas of hard spheres.
    Brey JJ; García de Soria MI; Maynar P
    Phys Rev E; 2020 Jan; 101(1-1):012102. PubMed ID: 32069586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Boltzmann kinetic equation for a strongly confined gas of hard spheres.
    Brey JJ; de Soria MIG; Maynar P
    Phys Rev E; 2017 Oct; 96(4-1):042117. PubMed ID: 29347460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic equation and nonequilibrium entropy for a quasi-two-dimensional gas.
    Brey JJ; Maynar P; García de Soria MI
    Phys Rev E; 2016 Oct; 94(4-1):040103. PubMed ID: 27841642
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hydrodynamics for a model of a confined quasi-two-dimensional granular gas.
    Brey JJ; Buzón V; Maynar P; García de Soria MI
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 May; 91(5):052201. PubMed ID: 26066167
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homogeneous steady state of a confined granular gas.
    Brey JJ; García de Soria MI; Maynar P; Buzón V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062205. PubMed ID: 24483434
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of the moments in advection-diffusion lattice Boltzmann method. II. Attenuation of the boundary layers via double-Λ bounce-back flux scheme.
    Ginzburg I
    Phys Rev E; 2017 Jan; 95(1-1):013305. PubMed ID: 28208489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of intruders in granular suspensions: Enskog theory and random walk interpretation.
    Gómez González R; Abad E; Bravo Yuste S; Garzó V
    Phys Rev E; 2023 Aug; 108(2-1):024903. PubMed ID: 37723720
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inhomogeneous cooling state of a strongly confined granular gas at low density.
    Brey JJ; de Soria MIG; Maynar P
    Phys Rev E; 2019 Nov; 100(5-1):052901. PubMed ID: 31869941
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular dynamics simulation study of self-diffusion for penetrable-sphere model fluids.
    Suh SH; Kim CH; Kim SC; Santos A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Nov; 82(5 Pt 1):051202. PubMed ID: 21230466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Diffusion of impurities in a granular gas.
    Garzó V; Montanero JM
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Feb; 69(2 Pt 1):021301. PubMed ID: 14995435
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transport coefficients of a granular gas of inelastic rough hard spheres.
    Kremer GM; Santos A; Garzó V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):022205. PubMed ID: 25215731
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-diffusion coefficient of the square-well fluid from molecular dynamics simulations within the constant force approach.
    Torres-Carbajal A; Trejos VM; Nicasio-Collazo LA
    J Chem Phys; 2018 Oct; 149(14):144501. PubMed ID: 30316277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular dynamics study of the thermodynamics and transport coefficients of hard hyperspheres in six and seven dimensions.
    Lue L; Bishop M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Aug; 74(2 Pt 1):021201. PubMed ID: 17025411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics and kinetic theory of hard spheres under strong confinement.
    Brey JJ; de Soria MIG; Maynar P
    Phys Rev E; 2024 Sep; 110(3-1):034127. PubMed ID: 39425310
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dense fluid transport for inelastic hard spheres.
    Garzó V; Dufty JW
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5895-911. PubMed ID: 11969571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mass transport of impurities in a moderately dense granular gas.
    Garzó V; Vega Reyes F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 1):041303. PubMed ID: 19518220
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nonisothermal Brownian motion: Thermophoresis as the macroscopic manifestation of thermally biased molecular motion.
    Brenner H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 1):061201. PubMed ID: 16485937
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entropy production in diffusion-reaction systems: the reactive random Lorentz gas.
    Mátyás L; Gaspard P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Mar; 71(3 Pt 2A):036147. PubMed ID: 15903533
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Viscosity of a classical gas: The rare-collision versus the frequent-collision regime.
    Magner AG; Gorenstein MI; Grygoriev UV
    Phys Rev E; 2017 May; 95(5-1):052113. PubMed ID: 28618555
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory effects in the relaxation of a confined granular gas.
    Brey JJ; de Soria MI; Maynar P; Buzón V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Sep; 90(3):032207. PubMed ID: 25314437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.