These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32069634)

  • 1. Effect of local Peregrine soliton emergence on statistics of random waves in the one-dimensional focusing nonlinear Schrödinger equation.
    Tikan A
    Phys Rev E; 2020 Jan; 101(1-1):012209. PubMed ID: 32069634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Universality of the Peregrine Soliton in the Focusing Dynamics of the Cubic Nonlinear Schrödinger Equation.
    Tikan A; Billet C; El G; Tovbis A; Bertola M; Sylvestre T; Gustave F; Randoux S; Genty G; Suret P; Dudley JM
    Phys Rev Lett; 2017 Jul; 119(3):033901. PubMed ID: 28777604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Breather transition dynamics, Peregrine combs and walls, and modulation instability in a variable-coefficient nonlinear Schrödinger equation with higher-order effects.
    Wang L; Zhang JH; Liu C; Li M; Qi FH
    Phys Rev E; 2016 Jun; 93(6):062217. PubMed ID: 27415265
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chirped Peregrine solitons in a class of cubic-quintic nonlinear Schrödinger equations.
    Chen S; Baronio F; Soto-Crespo JM; Liu Y; Grelu P
    Phys Rev E; 2016 Jun; 93(6):062202. PubMed ID: 27415250
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rogue waves in nonlocal media.
    Horikis TP; Ablowitz MJ
    Phys Rev E; 2017 Apr; 95(4-1):042211. PubMed ID: 28505851
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonlinear Schrödinger waves in a disordered potential: Branched flow, spectrum diffusion, and rogue waves.
    Sun ZY; Yu X
    Chaos; 2022 Feb; 32(2):023108. PubMed ID: 35232051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-shot observation of optical rogue waves in integrable turbulence using time microscopy.
    Suret P; Koussaifi RE; Tikan A; Evain C; Randoux S; Szwaj C; Bielawski S
    Nat Commun; 2016 Oct; 7():13136. PubMed ID: 27713416
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Peregrine rogue waves induced by the interaction between a continuous wave and a soliton.
    Yang G; Li L; Jia S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 2):046608. PubMed ID: 22680599
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Possibility of the existence of the rogue wave and the super rogue wave in granular matter.
    Han JF; Liang T; Duan WS
    Eur Phys J E Soft Matter; 2019 Jan; 42(1):5. PubMed ID: 30656485
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nonlinear spectral analysis of Peregrine solitons observed in optics and in hydrodynamic experiments.
    Randoux S; Suret P; Chabchoub A; Kibler B; El G
    Phys Rev E; 2018 Aug; 98(2-1):022219. PubMed ID: 30253473
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transverse Instability of Rogue Waves.
    Ablowitz MJ; Cole JT
    Phys Rev Lett; 2021 Sep; 127(10):104101. PubMed ID: 34533341
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fundamental Peregrine Solitons of Ultrastrong Amplitude Enhancement through Self-Steepening in Vector Nonlinear Systems.
    Chen S; Pan C; Grelu P; Baronio F; Akhmediev N
    Phys Rev Lett; 2020 Mar; 124(11):113901. PubMed ID: 32242694
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rogue wave formation scenarios for the focusing nonlinear Schrödinger equation with parabolic-profile initial data on a compact support.
    Demontis F; Ortenzi G; Roberti G; Sommacal M
    Phys Rev E; 2023 Aug; 108(2-1):024213. PubMed ID: 37723695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background.
    Zhang HQ; Chen F
    Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045
    [TBL] [Abstract][Full Text] [Related]  

  • 15. From solitons to rogue waves in nonlinear left-handed metamaterials.
    Shen Y; Kevrekidis PG; Veldes GP; Frantzeskakis DJ; DiMarzio D; Lan X; Radisic V
    Phys Rev E; 2017 Mar; 95(3-1):032223. PubMed ID: 28415369
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rogue periodic waves of the focusing nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521
    [No Abstract]   [Full Text] [Related]  

  • 17. Rogue waves on the background of periodic standing waves in the derivative nonlinear Schrödinger equation.
    Chen J; Pelinovsky DE
    Phys Rev E; 2021 Jun; 103(6-1):062206. PubMed ID: 34271656
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soliton gas: Theory, numerics, and experiments.
    Suret P; Randoux S; Gelash A; Agafontsev D; Doyon B; El G
    Phys Rev E; 2024 Jun; 109(6-1):061001. PubMed ID: 39020870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Extreme rogue wave generation from narrowband partially coherent waves.
    Agafontsev DS; Randoux S; Suret P
    Phys Rev E; 2021 Mar; 103(3-1):032209. PubMed ID: 33862832
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rogue wave modes for a derivative nonlinear Schrödinger model.
    Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.