These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

302 related articles for article (PubMed ID: 32069662)

  • 1. Study of the Hopf functional equation for turbulence: Duhamel principle and dynamical scaling.
    Ohkitani K
    Phys Rev E; 2020 Jan; 101(1-1):013104. PubMed ID: 32069662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-similarity in turbulence and its applications.
    Ohkitani K
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210048. PubMed ID: 35527638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamical equations for the vector potential and the velocity potential in incompressible irrotational Euler flows: a refined Bernoulli theorem.
    Ohkitani K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Sep; 92(3):033010. PubMed ID: 26465559
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hidden scale invariance in Navier-Stokes intermittency.
    Mailybaev AA; Thalabard S
    Philos Trans A Math Phys Eng Sci; 2022 Mar; 380(2218):20210098. PubMed ID: 35034487
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical-mechanical predictions and Navier-Stokes dynamics of two-dimensional flows on a bounded domain.
    Brands H; Maassen SR; Clercx HJ
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Sep; 60(3):2864-74. PubMed ID: 11970092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuating hydrodynamics and turbulence in a rotating fluid: universal properties.
    Basu A; Bhattacharjee JK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 2):026311. PubMed ID: 22463321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-attenuation of extreme events in Navier-Stokes turbulence.
    Buaria D; Pumir A; Bodenschatz E
    Nat Commun; 2020 Nov; 11(1):5852. PubMed ID: 33203875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-time asymptotics of the Navier-Stokes and vorticity equations on R(3).
    Gallay T; Wayne CE
    Philos Trans A Math Phys Eng Sci; 2002 Oct; 360(1799):2155-88. PubMed ID: 12804232
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uniform Finite Element Error Estimates with Power-Type Asymptotic Constants for Unsteady Navier-Stokes Equations.
    Xie C; Wang K
    Entropy (Basel); 2022 Jul; 24(7):. PubMed ID: 35885169
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Navier-Stokes Equations Do Not Describe the Smallest Scales of Turbulence in Gases.
    McMullen RM; Krygier MC; Torczynski JR; Gallis MA
    Phys Rev Lett; 2022 Mar; 128(11):114501. PubMed ID: 35363027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-similarity in incompressible Navier-Stokes equations.
    Ercan A; Kavvas ML
    Chaos; 2015 Dec; 25(12):123126. PubMed ID: 26723165
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tensor approximation of functional differential equations.
    Rodgers A; Venturi D
    Phys Rev E; 2024 Jul; 110(1-2):015310. PubMed ID: 39160976
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Turbulent kinetic energy and a possible hierarchy of length scales in a generalization of the Navier-Stokes alpha theory.
    Fried E; Gurtin ME
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 2):056306. PubMed ID: 17677163
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nonlinear Kinetics on Lattices Based on the Kinetic Interaction Principle.
    Kaniadakis G; Hristopulos DT
    Entropy (Basel); 2018 Jun; 20(6):. PubMed ID: 33265516
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissipation-range fluid turbulence and thermal noise.
    Bandak D; Goldenfeld N; Mailybaev AA; Eyink G
    Phys Rev E; 2022 Jun; 105(6-2):065113. PubMed ID: 35854607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. No Existence and Smoothness of Solution of the Navier-Stokes Equation.
    Dou HS
    Entropy (Basel); 2022 Feb; 24(3):. PubMed ID: 35327850
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Statistical sources for broadband shock-associated noise using the Navier-Stokes equations.
    Patel TK; Miller SAE
    J Acoust Soc Am; 2019 Dec; 146(6):4339. PubMed ID: 31893692
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of pressure in nonlinear velocity gradient dynamics in turbulence.
    Bikkani RK; Girimaji SS
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 2):036307. PubMed ID: 17500791
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fully developed isotropic turbulence: Nonperturbative renormalization group formalism and fixed-point solution.
    Canet L; Delamotte B; Wschebor N
    Phys Rev E; 2016 Jun; 93(6):063101. PubMed ID: 27415353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.