These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 32069683)

  • 1. Critical force in active microrheology.
    Gruber M; Puertas AM; Fuchs M
    Phys Rev E; 2020 Jan; 101(1-1):012612. PubMed ID: 32069683
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active microrheology in a colloidal glass.
    Gruber M; Abade GC; Puertas AM; Fuchs M
    Phys Rev E; 2016 Oct; 94(4-1):042602. PubMed ID: 27841487
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microrheology of colloidal systems.
    Puertas AM; Voigtmann T
    J Phys Condens Matter; 2014 Jun; 26(24):243101. PubMed ID: 24848328
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Asymptotic analysis of mode-coupling theory of active nonlinear microrheology.
    Gnann MV; Voigtmann T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011406. PubMed ID: 23005416
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microrheology of colloidal suspensions via dynamic Monte Carlo simulations.
    García Daza FA; Puertas AM; Cuetos A; Patti A
    J Colloid Interface Sci; 2022 Jan; 605():182-192. PubMed ID: 34325340
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Active and nonlinear microrheology in dense colloidal suspensions.
    Gazuz I; Puertas AM; Voigtmann T; Fuchs M
    Phys Rev Lett; 2009 Jun; 102(24):248302. PubMed ID: 19659052
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Logarithmic relaxation in a colloidal system.
    Sperl M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Sep; 68(3 Pt 1):031405. PubMed ID: 14524767
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In search of temporal power laws in the orientational relaxation near isotropic-nematic phase transition in model nematogens.
    Jose PP; Bagchi B
    J Chem Phys; 2004 Jun; 120(23):11256-66. PubMed ID: 15268154
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Active microrheology of colloidal suspensions of hard cuboids.
    Rafael EM; Tonti L; Daza FAG; Patti A
    Phys Rev E; 2022 Sep; 106(3-1):034612. PubMed ID: 36266794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force-induced diffusion in microrheology.
    Harrer ChJ; Winter D; Horbach J; Fuchs M; Voigtmann T
    J Phys Condens Matter; 2012 Nov; 24(46):464105. PubMed ID: 23114229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear response of dense colloidal suspensions under oscillatory shear: mode-coupling theory and Fourier transform rheology experiments.
    Brader JM; Siebenbürger M; Ballauff M; Reinheimer K; Wilhelm M; Frey SJ; Weysser F; Fuchs M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Dec; 82(6 Pt 1):061401. PubMed ID: 21230671
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tracking control of colloidal particles through non-homogeneous stationary flows.
    Híjar H
    J Chem Phys; 2013 Dec; 139(23):234903. PubMed ID: 24359389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical study of long-time dynamics and ergodic-nonergodic transitions in dense simple fluids.
    McCowan DD
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Aug; 92(2):022107. PubMed ID: 26382344
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Langevin picture of Lévy walk in a constant force field.
    Chen Y; Wang X; Deng W
    Phys Rev E; 2019 Dec; 100(6-1):062141. PubMed ID: 31962521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tagged-particle motion in glassy systems under shear: Comparison of mode coupling theory and Brownian dynamics simulations.
    Krüger M; Weysser F; Fuchs M
    Eur Phys J E Soft Matter; 2011 Sep; 34(9):88. PubMed ID: 21938616
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Creep and thermal rounding close to the elastic depinning threshold.
    Purrello VH; Iguain JL; Kolton AB; Jagla EA
    Phys Rev E; 2017 Aug; 96(2-1):022112. PubMed ID: 28950448
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Relaxation in a glassy binary mixture: comparison of the mode-coupling theory to a Brownian dynamics simulation.
    Flenner E; Szamel G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031508. PubMed ID: 16241445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active particles sense micromechanical properties of glasses.
    Lozano C; Gomez-Solano JR; Bechinger C
    Nat Mater; 2019 Oct; 18(10):1118-1123. PubMed ID: 31384031
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mode-coupling analysis of residual stresses in colloidal glasses.
    Fritschi S; Fuchs M; Voigtmann T
    Soft Matter; 2014 Jul; 10(27):4822-32. PubMed ID: 24841537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Depinning dynamics of two-dimensional magnetized colloids on a random substrate.
    Cao YG; Li QX; Fu GY; Liu J; Guo HZ; Hu X; Li XJ
    J Phys Condens Matter; 2010 Apr; 22(15):155101. PubMed ID: 21389546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.