These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
195 related articles for article (PubMed ID: 32069768)
1. Formation of biofilms from new pipelines at both ends of the drinking water distribution system and comparison of disinfection by-products formation potential. Chen H; Wei Z; Sun G; Su H; Liu J; Hu B; Zhou X; Lou L Environ Res; 2020 Mar; 182():109150. PubMed ID: 32069768 [TBL] [Abstract][Full Text] [Related]
2. Effects of pipe materials on the characteristic recognition, disinfection byproduct formation, and toxicity risk of pipe wall biofilms during chlorination in water supply pipelines. Yan X; Lin T; Wang X; Zhang S; Zhou K Water Res; 2022 Feb; 210():117980. PubMed ID: 34974347 [TBL] [Abstract][Full Text] [Related]
3. Occurrence and quantification of culturable and viable but non-culturable (VBNC) pathogens in biofilm on different pipes from a metropolitan drinking water distribution system. Fu Y; Peng H; Liu J; Nguyen TH; Hashmi MZ; Shen C Sci Total Environ; 2021 Apr; 764():142851. PubMed ID: 33097267 [TBL] [Abstract][Full Text] [Related]
4. Characterization of young biofilm morphology, disinfection byproduct formation potential and toxicity of renewed water supply pipelines by phosphorus release from corroded pipes. Zheng S; Lin T; Chen H; Zhang X; Jiang F Sci Total Environ; 2023 Aug; 884():163813. PubMed ID: 37121323 [TBL] [Abstract][Full Text] [Related]
5. Bacterial community radial-spatial distribution in biofilms along pipe wall in chlorinated drinking water distribution system of East China. Liu J; Ren H; Ye X; Wang W; Liu Y; Lou L; Cheng D; He X; Zhou X; Qiu S; Fu L; Hu B Appl Microbiol Biotechnol; 2017 Jan; 101(2):749-759. PubMed ID: 27761636 [TBL] [Abstract][Full Text] [Related]
6. Pyrosequencing analysis of bacterial communities in biofilms from different pipe materials in a city drinking water distribution system of East China. Ren H; Wang W; Liu Y; Liu S; Lou L; Cheng D; He X; Zhou X; Qiu S; Fu L; Liu J; Hu B Appl Microbiol Biotechnol; 2015 Dec; 99(24):10713-24. PubMed ID: 26311220 [TBL] [Abstract][Full Text] [Related]
7. Effects of cast iron pipe corrosion on nitrogenous disinfection by-products formation in drinking water distribution systems via interaction among iron particles, biofilms, and chlorine. Qi P; Li T; Hu C; Li Z; Bi Z; Chen Y; Zhou H; Su Z; Li X; Xing X; Chen C Chemosphere; 2022 Apr; 292():133364. PubMed ID: 34933025 [TBL] [Abstract][Full Text] [Related]
8. Pilot investigation on formation of 2,4,6-trichloroanisole via microbial O-methylation of 2,4,6-trichlorophenol in drinking water distribution system: An insight into microbial mechanism. Zhang K; Cao C; Zhou X; Zheng F; Sun Y; Cai Z; Fu J Water Res; 2018 Mar; 131():11-21. PubMed ID: 29258001 [TBL] [Abstract][Full Text] [Related]
9. Microbial diversity in biofilms on water distribution pipes of different materials. Yu J; Kim D; Lee T Water Sci Technol; 2010; 61(1):163-71. PubMed ID: 20057102 [TBL] [Abstract][Full Text] [Related]
10. [Analysis of different pipe corrosion by ESEM and bacteria identification by API in pilot distribution network]. Wu Q; Zhao X; Yu Q; Li J Wei Sheng Yan Jiu; 2008 Jul; 37(4):405-8. PubMed ID: 18839520 [TBL] [Abstract][Full Text] [Related]
11. Influence of pipe material on biofilm microbial communities found in drinking water supply system. Goraj W; Pytlak A; Kowalska B; Kowalski D; Grządziel J; Szafranek-Nakonieczna A; Gałązka A; Stępniewska Z; Stępniewski W Environ Res; 2021 May; 196():110433. PubMed ID: 33166536 [TBL] [Abstract][Full Text] [Related]
12. Bacterial community changes in copper and PEX drinking water pipeline biofilms under extra disinfection and magnetic water treatment. Inkinen J; Jayaprakash B; Ahonen M; Pitkänen T; Mäkinen R; Pursiainen A; Santo Domingo JW; Salonen H; Elk M; Keinänen-Toivola MM J Appl Microbiol; 2018 Feb; 124(2):611-624. PubMed ID: 29222953 [TBL] [Abstract][Full Text] [Related]
13. Contamination potential of drinking water distribution network biofilms. Wingender J; Flemming HC Water Sci Technol; 2004; 49(11-12):277-86. PubMed ID: 15303752 [TBL] [Abstract][Full Text] [Related]
14. [Effect of chloramines disinfection for biofilm formation control on copper and stainless steel pipe materials]. Zhou LL; Zhang YJ; Li X; Li GB Huan Jing Ke Xue; 2008 Dec; 29(12):3372-5. PubMed ID: 19256370 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the microbiomes of two drinking water distribution systems-with and without residual chloramine disinfection. Waak MB; Hozalski RM; Hallé C; LaPara TM Microbiome; 2019 Jun; 7(1):87. PubMed ID: 31174608 [TBL] [Abstract][Full Text] [Related]
16. Influence of pipe materials and VBNC cells on culturable bacteria in a chlorinated drinking water model system. Lee DG; Park SJ; Kim SJ J Microbiol Biotechnol; 2007 Sep; 17(9):1558-62. PubMed ID: 18062238 [TBL] [Abstract][Full Text] [Related]
17. Pipeline materials modify the effectiveness of disinfectants in drinking water distribution systems. Lehtola MJ; Miettinen IT; Lampola T; Hirvonen A; Vartiainen T; Martikainen PJ Water Res; 2005 May; 39(10):1962-71. PubMed ID: 15869778 [TBL] [Abstract][Full Text] [Related]
18. Formation of natural biofilms during chlorine dioxide and u.v. disinfection in a public drinking water distribution system. Schwartz T; Hoffmann S; Obst U J Appl Microbiol; 2003; 95(3):591-601. PubMed ID: 12911708 [TBL] [Abstract][Full Text] [Related]
19. Early succession of biofilm bacterial communities in newly built drinking water pipelines via multi-area analysis. Chen X; Xiao L; Niu J; Wang Y; Zhang X; Gong L; Yao F; Xu K Appl Microbiol Biotechnol; 2023 Jun; 107(11):3817-3828. PubMed ID: 37074383 [TBL] [Abstract][Full Text] [Related]
20. Complex impact of metals on the fate of disinfection by-products in drinking water pipelines: A systematic review. Guo X; Ji X; Liu Z; Feng Z; Zhang Z; Du S; Li X; Ma J; Sun Z Water Res; 2024 Sep; 261():121991. PubMed ID: 38941679 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]