These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

381 related articles for article (PubMed ID: 32070147)

  • 21. Integrating optogenetic and pharmacological approaches to study neural circuit function: current applications and future directions.
    Stuber GD; Mason AO
    Pharmacol Rev; 2013 Jan; 65(1):156-70. PubMed ID: 23319548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice.
    Montgomery KL; Yeh AJ; Ho JS; Tsao V; Mohan Iyer S; Grosenick L; Ferenczi EA; Tanabe Y; Deisseroth K; Delp SL; Poon AS
    Nat Methods; 2015 Oct; 12(10):969-74. PubMed ID: 26280330
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optogenetics: the new molecular approach to control functions of neural cells in epilepsy, depression and tumors of the central nervous system.
    Camporeze B; Manica BA; Bonafé GA; Ferreira JJC; Diniz AL; de Oliveira CTP; Mathias Junior LR; de Aguiar PHP; Ortega MM
    Am J Cancer Res; 2018; 8(10):1900-1918. PubMed ID: 30416844
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Submillisecond Optogenetic Control of Neuronal Firing with Two-Photon Holographic Photoactivation of Chronos.
    Ronzitti E; Conti R; Zampini V; Tanese D; Foust AJ; Klapoetke N; Boyden ES; Papagiakoumou E; Emiliani V
    J Neurosci; 2017 Nov; 37(44):10679-10689. PubMed ID: 28972125
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optogenetics and its application in neural degeneration and regeneration.
    Ordaz JD; Wu W; Xu XM
    Neural Regen Res; 2017 Aug; 12(8):1197-1209. PubMed ID: 28966628
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nonhuman Primate Optogenetics: Recent Advances and Future Directions.
    Galvan A; Stauffer WR; Acker L; El-Shamayleh Y; Inoue KI; Ohayon S; Schmid MC
    J Neurosci; 2017 Nov; 37(45):10894-10903. PubMed ID: 29118219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optogenetics for Understanding and Treating Brain Injury: Advances in the Field and Future Prospects.
    Sun Y; Li M; Cao S; Xu Y; Wu P; Xu S; Pan Q; Guo Y; Ye Y; Wang Z; Dai H; Xie X; Chen X; Liang W
    Int J Mol Sci; 2022 Feb; 23(3):. PubMed ID: 35163726
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optogenetic tools for modulating and probing the epileptic network.
    Zhao M; Alleva R; Ma H; Daniel AG; Schwartz TH
    Epilepsy Res; 2015 Oct; 116():15-26. PubMed ID: 26354163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Optogenetic brain interfaces.
    Pashaie R; Anikeeva P; Lee JH; Prakash R; Yizhar O; Prigge M; Chander D; Richner TJ; Williams J
    IEEE Rev Biomed Eng; 2014; 7():3-30. PubMed ID: 24802525
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Optogenetics and its application in pain and anxiety research.
    Jarrin S; Finn DP
    Neurosci Biobehav Rev; 2019 Oct; 105():200-211. PubMed ID: 31421140
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Electrical stimuli in the central nervous system microenvironment.
    Thompson DM; Koppes AN; Hardy JG; Schmidt CE
    Annu Rev Biomed Eng; 2014 Jul; 16():397-430. PubMed ID: 25014787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The expanding role of split protein complementation in opsin-free optogenetics.
    Skeeters SS; Camp T; Fan H; Zhang K
    Curr Opin Pharmacol; 2022 Aug; 65():102236. PubMed ID: 35609383
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inferring neural circuit properties from optogenetic stimulation.
    Avery M; Nassi J; Reynolds J
    PLoS One; 2018; 13(10):e0205386. PubMed ID: 30365490
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Optical cuff for optogenetic control of the peripheral nervous system.
    Michoud F; Sottas L; Browne LE; Asboth L; Latremoliere A; Sakuma M; Courtine G; Woolf CJ; Lacour SP
    J Neural Eng; 2018 Feb; 15(1):015002. PubMed ID: 28978778
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Zebrafish as an appealing model for optogenetic studies.
    Simmich J; Staykov E; Scott E
    Prog Brain Res; 2012; 196():145-62. PubMed ID: 22341325
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Will optogenetics be used to treat chronic pain patients?
    Beaudry H; Daou I; Ribeiro-da-Silva A; Séguéla P
    Pain Manag; 2017 Jul; 7(4):269-278. PubMed ID: 28726577
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Temporal central and peripheral nervous system changes induced by a paralytogenic mutant of Moloney murine leukemia virus TB.
    Stoica G; Illanes O; Tasca SI; Wong PK
    Lab Invest; 1993 Dec; 69(6):724-35. PubMed ID: 8264234
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Optophysiology: Illuminating cell physiology with optogenetics.
    Tan P; He L; Huang Y; Zhou Y
    Physiol Rev; 2022 Jul; 102(3):1263-1325. PubMed ID: 35072525
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders.
    Cho KK; Sohal VS
    Hum Mol Genet; 2014 Sep; 23(R1):R64-8. PubMed ID: 24824218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Optogenetic stimulation: Understanding memory and treating deficits.
    Barnett SC; Perry BAL; Dalrymple-Alford JC; Parr-Brownlie LC
    Hippocampus; 2018 Jul; 28(7):457-470. PubMed ID: 29742814
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 20.