These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 32070279)

  • 1. RPI-SE: a stacking ensemble learning framework for ncRNA-protein interactions prediction using sequence information.
    Yi HC; You ZH; Wang MN; Guo ZH; Wang YB; Zhou JR
    BMC Bioinformatics; 2020 Feb; 21(1):60. PubMed ID: 32070279
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RPI-EDLCN: An Ensemble Deep Learning Framework Based on Capsule Network for ncRNA-Protein Interaction Prediction.
    Li X; Qu W; Yan J; Tan J
    J Chem Inf Model; 2024 Apr; 64(7):2221-2235. PubMed ID: 37158609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. RPI-Pred: predicting ncRNA-protein interaction using sequence and structural information.
    Suresh V; Liu L; Adjeroh D; Zhou X
    Nucleic Acids Res; 2015 Feb; 43(3):1370-9. PubMed ID: 25609700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. RPITER: A Hierarchical Deep Learning Framework for ncRNA⁻Protein Interaction Prediction.
    Peng C; Han S; Zhang H; Li Y
    Int J Mol Sci; 2019 Mar; 20(5):. PubMed ID: 30832218
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EDLMFC: an ensemble deep learning framework with multi-scale features combination for ncRNA-protein interaction prediction.
    Wang J; Zhao Y; Gong W; Liu Y; Wang M; Huang X; Tan J
    BMC Bioinformatics; 2021 Mar; 22(1):133. PubMed ID: 33740884
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SAWRPI: A Stacking Ensemble Framework With Adaptive Weight for Predicting ncRNA-Protein Interactions Using Sequence Information.
    Ren ZH; Yu CQ; Li LP; You ZH; Guan YJ; Li YC; Pan J
    Front Genet; 2022; 13():839540. PubMed ID: 35360836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Deep Learning Framework for Robust and Accurate Prediction of ncRNA-Protein Interactions Using Evolutionary Information.
    Yi HC; You ZH; Huang DS; Li X; Jiang TH; Li LP
    Mol Ther Nucleic Acids; 2018 Jun; 11():337-344. PubMed ID: 29858068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. BGFE: A Deep Learning Model for ncRNA-Protein Interaction Predictions Based on Improved Sequence Information.
    Zhan ZH; Jia LN; Zhou Y; Li LP; Yi HC
    Int J Mol Sci; 2019 Feb; 20(4):. PubMed ID: 30813451
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accurate Prediction of ncRNA-Protein Interactions From the Integration of Sequence and Evolutionary Information.
    Zhan ZH; You ZH; Li LP; Zhou Y; Yi HC
    Front Genet; 2018; 9():458. PubMed ID: 30349558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. DM-RPIs: Predicting ncRNA-protein interactions using stacked ensembling strategy.
    Cheng S; Zhang L; Tan J; Gong W; Li C; Zhang X
    Comput Biol Chem; 2019 Dec; 83():107088. PubMed ID: 31330489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. IPMiner: hidden ncRNA-protein interaction sequential pattern mining with stacked autoencoder for accurate computational prediction.
    Pan X; Fan YX; Yan J; Shen HB
    BMC Genomics; 2016 Aug; 17():582. PubMed ID: 27506469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HeadTailTransfer: An efficient sampling method to improve the performance of graph neural network method in predicting sparse ncRNA-protein interactions.
    Wei J; Zhuo L; Pan S; Lian X; Yao X; Fu X
    Comput Biol Med; 2023 May; 157():106783. PubMed ID: 36958237
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Prediction of RNA-protein interactions by combining deep convolutional neural network with feature selection ensemble method.
    Wang L; Yan X; Liu ML; Song KJ; Sun XF; Pan WW
    J Theor Biol; 2019 Jan; 461():230-238. PubMed ID: 30321541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. De novo prediction of RNA-protein interactions from sequence information.
    Wang Y; Chen X; Liu ZP; Huang Q; Wang Y; Xu D; Zhang XS; Chen R; Chen L
    Mol Biosyst; 2013 Jan; 9(1):133-42. PubMed ID: 23138266
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Data Driven Model for Predicting RNA-Protein Interactions based on Gradient Boosting Machine.
    Jain DS; Gupte SR; Aduri R
    Sci Rep; 2018 Jun; 8(1):9552. PubMed ID: 29934510
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computational Methods for Predicting ncRNA-protein Interactions.
    Zhang SW; Fan XN
    Med Chem; 2017; 13(6):515-525. PubMed ID: 28494725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PCVMZM: Using the Probabilistic Classification Vector Machines Model Combined with a Zernike Moments Descriptor to Predict Protein-Protein Interactions from Protein Sequences.
    Wang Y; You Z; Li X; Chen X; Jiang T; Zhang J
    Int J Mol Sci; 2017 May; 18(5):. PubMed ID: 28492483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FexRNA: Exploratory Data Analysis and Feature Selection of Non-Coding RNA.
    Amin N; McGrath A; Chen YP
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(6):2795-2801. PubMed ID: 33539302
    [TBL] [Abstract][Full Text] [Related]  

  • 19. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.
    Hu H; Zhang L; Ai H; Zhang H; Fan Y; Zhao Q; Liu H
    RNA Biol; 2018; 15(6):797-806. PubMed ID: 29583068
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PredLnc-GFStack: A Global Sequence Feature Based on a Stacked Ensemble Learning Method for Predicting lncRNAs from Transcripts.
    Liu S; Zhao X; Zhang G; Li W; Liu F; Liu S; Zhang W
    Genes (Basel); 2019 Sep; 10(9):. PubMed ID: 31484412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.