BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

589 related articles for article (PubMed ID: 32070346)

  • 1. Empagliflozin improved systolic blood pressure, endothelial dysfunction and heart remodeling in the metabolic syndrome ZSF1 rat.
    Park SH; Farooq MA; Gaertner S; Bruckert C; Qureshi AW; Lee HH; Benrahla D; Pollet B; Stephan D; Ohlmann P; Lessinger JM; Mayoux E; Auger C; Morel O; Schini-Kerth VB
    Cardiovasc Diabetol; 2020 Feb; 19(1):19. PubMed ID: 32070346
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Beneficial Effect of the SGLT2 Inhibitor Empagliflozin on Glucose Homeostasis and Cardiovascular Parameters in the Cohen Rosenthal Diabetic Hypertensive (CRDH) Rat.
    Younis F; Leor J; Abassi Z; Landa N; Rath L; Hollander K; Naftali-Shani N; Rosenthal T
    J Cardiovasc Pharmacol Ther; 2018 Jul; 23(4):358-371. PubMed ID: 29627992
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sodium-glucose co-transporter 2 inhibition with empagliflozin improves cardiac function in non-diabetic rats with left ventricular dysfunction after myocardial infarction.
    Yurista SR; Silljé HHW; Oberdorf-Maass SU; Schouten EM; Pavez Giani MG; Hillebrands JL; van Goor H; van Veldhuisen DJ; de Boer RA; Westenbrink BD
    Eur J Heart Fail; 2019 Jul; 21(7):862-873. PubMed ID: 31033127
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Angiotensin II-induced upregulation of SGLT1 and 2 contributes to human microparticle-stimulated endothelial senescence and dysfunction: protective effect of gliflozins.
    Park SH; Belcastro E; Hasan H; Matsushita K; Marchandot B; Abbas M; Toti F; Auger C; Jesel L; Ohlmann P; Morel O; Schini-Kerth VB
    Cardiovasc Diabetol; 2021 Mar; 20(1):65. PubMed ID: 33726768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury.
    Aroor AR; Das NA; Carpenter AJ; Habibi J; Jia G; Ramirez-Perez FI; Martinez-Lemus L; Manrique-Acevedo CM; Hayden MR; Duta C; Nistala R; Mayoux E; Padilla J; Chandrasekar B; DeMarco VG
    Cardiovasc Diabetol; 2018 Jul; 17(1):108. PubMed ID: 30060748
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Empagliflozin Improves Diastolic Function in HFpEF by Restabilizing the Mitochondrial Respiratory Chain.
    Schauer A; Adams V; Kämmerer S; Langner E; Augstein A; Barthel P; Männel A; Fabig G; Alves PKN; Günscht M; El-Armouche A; Müller-Reichert T; Linke A; Winzer EB
    Circ Heart Fail; 2024 Jun; 17(6):e011107. PubMed ID: 38847102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The sodium-glucose co-transporter 2 inhibitor empagliflozin attenuates cardiac fibrosis and improves ventricular hemodynamics in hypertensive heart failure rats.
    Lee HC; Shiou YL; Jhuo SJ; Chang CY; Liu PL; Jhuang WJ; Dai ZK; Chen WY; Chen YF; Lee AS
    Cardiovasc Diabetol; 2019 Apr; 18(1):45. PubMed ID: 30935417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SGLT2 inhibition with empagliflozin improves coronary microvascular function and cardiac contractility in prediabetic ob/ob
    Adingupu DD; Göpel SO; Grönros J; Behrendt M; Sotak M; Miliotis T; Dahlqvist U; Gan LM; Jönsson-Rylander AC
    Cardiovasc Diabetol; 2019 Feb; 18(1):16. PubMed ID: 30732594
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Empagliflozin Ameliorates Adverse Left Ventricular Remodeling in Nondiabetic Heart Failure by Enhancing Myocardial Energetics.
    Santos-Gallego CG; Requena-Ibanez JA; San Antonio R; Ishikawa K; Watanabe S; Picatoste B; Flores E; Garcia-Ropero A; Sanz J; Hajjar RJ; Fuster V; Badimon JJ
    J Am Coll Cardiol; 2019 Apr; 73(15):1931-1944. PubMed ID: 30999996
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Load-independent effects of empagliflozin contribute to improved cardiac function in experimental heart failure with reduced ejection fraction.
    Connelly KA; Zhang Y; Desjardins JF; Nghiem L; Visram A; Batchu SN; Yerra VG; Kabir G; Thai K; Advani A; Gilbert RE
    Cardiovasc Diabetol; 2020 Feb; 19(1):13. PubMed ID: 32035482
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Empagliflozin prevents doxorubicin-induced myocardial dysfunction.
    Sabatino J; De Rosa S; Tammè L; Iaconetti C; Sorrentino S; Polimeni A; Mignogna C; Amorosi A; Spaccarotella C; Yasuda M; Indolfi C
    Cardiovasc Diabetol; 2020 May; 19(1):66. PubMed ID: 32414364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes.
    Habibi J; Aroor AR; Sowers JR; Jia G; Hayden MR; Garro M; Barron B; Mayoux E; Rector RS; Whaley-Connell A; DeMarco VG
    Cardiovasc Diabetol; 2017 Jan; 16(1):9. PubMed ID: 28086951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload.
    Nakao M; Shimizu I; Katsuumi G; Yoshida Y; Suda M; Hayashi Y; Ikegami R; Hsiao YT; Okuda S; Soga T; Minamino T
    Sci Rep; 2021 Sep; 11(1):18384. PubMed ID: 34526601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A SGLT2 inhibitor dapagliflozin suppresses prolonged ventricular-repolarization through augmentation of mitochondrial function in insulin-resistant metabolic syndrome rats.
    Durak A; Olgar Y; Degirmenci S; Akkus E; Tuncay E; Turan B
    Cardiovasc Diabetol; 2018 Nov; 17(1):144. PubMed ID: 30447687
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Empagliflozin directly improves diastolic function in human heart failure.
    Pabel S; Wagner S; Bollenberg H; Bengel P; Kovács Á; Schach C; Tirilomis P; Mustroph J; Renner A; Gummert J; Fischer T; Van Linthout S; Tschöpe C; Streckfuss-Bömeke K; Hasenfuss G; Maier LS; Hamdani N; Sossalla S
    Eur J Heart Fail; 2018 Dec; 20(12):1690-1700. PubMed ID: 30328645
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The evolving systemic biomarker milieu in obese ZSF1 rat model of human cardiometabolic syndrome: Characterization of the model and cardioprotective effect of GDF15.
    Stolina M; Luo X; Dwyer D; Han CY; Chen R; Zhang Y; Xiong Y; Chen Y; Yin J; Shkumatov A; Ason B; Hale C; Véniant MM
    PLoS One; 2020; 15(8):e0231234. PubMed ID: 32804947
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual inhibition of sodium-glucose linked cotransporters 1 and 2 exacerbates cardiac dysfunction following experimental myocardial infarction.
    Connelly KA; Zhang Y; Desjardins JF; Thai K; Gilbert RE
    Cardiovasc Diabetol; 2018 Jul; 17(1):99. PubMed ID: 29981571
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Empagliflozin improves left ventricular diastolic function of db/db mice.
    Moellmann J; Klinkhammer BM; Droste P; Kappel B; Haj-Yehia E; Maxeiner S; Artati A; Adamski J; Boor P; Schütt K; Lopaschuk GD; Verma S; Marx N; Lehrke M
    Biochim Biophys Acta Mol Basis Dis; 2020 Aug; 1866(8):165807. PubMed ID: 32353614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Empagliflozin ameliorates symptoms of diabetes and renal tubular dysfunction in a rat model of diabetes with enlarged kidney (DEK).
    Domon A; Katayama K; Sato T; Tochigi Y; Tazaki H; Suzuki H
    PLoS One; 2021; 16(5):e0251135. PubMed ID: 33945582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Both male and female obese ZSF1 rats develop cardiac dysfunction in obesity-induced heart failure with preserved ejection fraction.
    Nguyen ITN; Brandt MM; van de Wouw J; van Drie RWA; Wesseling M; Cramer MJ; de Jager SCA; Merkus D; Duncker DJ; Cheng C; Joles JA; Verhaar MC
    PLoS One; 2020; 15(5):e0232399. PubMed ID: 32374790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.