These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
178 related articles for article (PubMed ID: 32070603)
1. Identification of plastic toys contaminated with volatile organic compounds using QCM gas sensor array. Oleneva E; Kuchmenko T; Drozdova E; Legin A; Kirsanov D Talanta; 2020 May; 211():120701. PubMed ID: 32070603 [TBL] [Abstract][Full Text] [Related]
2. Piezoelectric Gas Sensors with Polycomposite Coatings in Biomedical Application. Shuba A; Kuchmenko T; Umarkhanov R Sensors (Basel); 2022 Nov; 22(21):. PubMed ID: 36366226 [TBL] [Abstract][Full Text] [Related]
3. Identification of Volatile Organic Compounds and Their Concentrations Using a Novel Method Analysis of MOS Sensors Signal. Gancarz M; Nawrocka A; Rusinek R J Food Sci; 2019 Aug; 84(8):2077-2085. PubMed ID: 31339559 [TBL] [Abstract][Full Text] [Related]
5. Cuprous Oxide Based Chemiresistive Electronic Nose for Discrimination of Volatile Organic Compounds. Liu B; Wu X; Kam KWL; Cheung WF; Zheng B ACS Sens; 2019 Nov; 4(11):3051-3055. PubMed ID: 31591885 [TBL] [Abstract][Full Text] [Related]
6. Preserve Your Books through the Smell. Veríssimo MIS; Oliveira JABP; Evtuguin DV; Gomes MTSR ACS Sens; 2019 Nov; 4(11):2915-2921. PubMed ID: 31647633 [TBL] [Abstract][Full Text] [Related]
7. Assessment of ecotoxicity and total volatile organic compound (TVOC) emissions from food and children's toy products. Szczepańska N; Marć M; Kudłak B; Simeonov V; Tsakovski S; Namieśnik J Ecotoxicol Environ Saf; 2018 Sep; 160():282-289. PubMed ID: 29857233 [TBL] [Abstract][Full Text] [Related]
8. Peptides, DNA and MIPs in Gas Sensing. From the Realization of the Sensors to Sample Analysis. Gaggiotti S; Della Pelle F; Mascini M; Cichelli A; Compagnone D Sensors (Basel); 2020 Aug; 20(16):. PubMed ID: 32784423 [TBL] [Abstract][Full Text] [Related]
9. Detection and Discrimination of Volatile Organic Compounds using a Single Film Bulk Acoustic Wave Resonator with Temperature Modulation as a Multiparameter Virtual Sensor Array. Zeng G; Wu C; Chang Y; Zhou C; Chen B; Zhang M; Li J; Duan X; Yang Q; Pang W ACS Sens; 2019 Jun; 4(6):1524-1533. PubMed ID: 31132253 [TBL] [Abstract][Full Text] [Related]
10. A Novel Method for Generation of a Fingerprint Using Electronic Nose on the Example of Rapeseed Spoilage. Rusinek R; Gancarz M; Krekora M; Nawrocka A J Food Sci; 2019 Jan; 84(1):51-58. PubMed ID: 30557906 [TBL] [Abstract][Full Text] [Related]
11. [Implementation of an electronic nose for rapid detection of volatile chloralkane and chloroalkene]. Wen XG; Liu R; Cai Q; Wan M; Tang LR; Chen LJ Huan Jing Ke Xue; 2012 Nov; 33(11):4012-7. PubMed ID: 23323439 [TBL] [Abstract][Full Text] [Related]
12. Diagnosing gastrointestinal illnesses using fecal headspace volatile organic compounds. Chan DK; Leggett CL; Wang KK World J Gastroenterol; 2016 Jan; 22(4):1639-49. PubMed ID: 26819529 [TBL] [Abstract][Full Text] [Related]
13. Ultrafast gas chromatography coupled to electronic nose to identify volatile biomarkers in exhaled breath from chronic obstructive pulmonary disease patients: A pilot study. Rodríguez-Aguilar M; Ramírez-García S; Ilizaliturri-Hernández C; Gómez-Gómez A; Van-Brussel E; Díaz-Barriga F; Medellín-Garibay S; Flores-Ramírez R Biomed Chromatogr; 2019 Dec; 33(12):e4684. PubMed ID: 31423612 [TBL] [Abstract][Full Text] [Related]
14. A novel electronic nose based on porous In2O3 microtubes sensor array for the discrimination of VOCs. Yang W; Wan P; Jia M; Hu J; Guan Y; Feng L Biosens Bioelectron; 2015 Feb; 64():547-53. PubMed ID: 25310487 [TBL] [Abstract][Full Text] [Related]
15. A Virtual Electronic Nose for the Efficient Classification and Quantification of Volatile Organic Compounds. Domènech-Gil G; Puglisi D Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236439 [TBL] [Abstract][Full Text] [Related]
16. Qualitative characteristics and comparison of volatile fraction of vodkas made from different botanical materials by comprehensive two-dimensional gas chromatography and the electronic nose based on the technology of ultra-fast gas chromatography. Wiśniewska P; Śliwińska M; Dymerski T; Wardencki W; Namieśnik J J Sci Food Agric; 2017 Mar; 97(4):1316-1325. PubMed ID: 27342385 [TBL] [Abstract][Full Text] [Related]
17. Electronic Nose Technology in Respiratory Diseases. Dragonieri S; Pennazza G; Carratu P; Resta O Lung; 2017 Apr; 195(2):157-165. PubMed ID: 28238110 [TBL] [Abstract][Full Text] [Related]
18. Classification of tea category using a portable electronic nose based on an odor imaging sensor array. Chen Q; Liu A; Zhao J; Ouyang Q J Pharm Biomed Anal; 2013 Oct; 84():77-83. PubMed ID: 23810847 [TBL] [Abstract][Full Text] [Related]
19. Identification of volatile organic compounds in the urine of patients with cervical cancer. Test concept for timely screening. Díaz de León-Martínez L; Flores-Ramírez R; López-Mendoza CM; Rodríguez-Aguilar M; Metha G; Zúñiga-Martínez L; Ornelas-Rebolledo O; Alcántara-Quintana LE Clin Chim Acta; 2021 Nov; 522():132-140. PubMed ID: 34418363 [TBL] [Abstract][Full Text] [Related]
20. Suspect screening of 200 hazardous substances in plastic toys using ultra-high-performance liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry. Meng X; Zhang N; Sun X; Niu Z; Deng Y; Xu J; Bai H; Ma Q J Chromatogr A; 2020 Apr; 1617():460830. PubMed ID: 31902577 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]