BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

406 related articles for article (PubMed ID: 32070610)

  • 1. Electrohydrodynamic jet 3D printing of PCL/PVP composite scaffold for cell culture.
    Li K; Wang D; Zhao K; Song K; Liang J
    Talanta; 2020 May; 211():120750. PubMed ID: 32070610
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Silkworm-inspired electrohydrodynamic jet 3D printing of composite scaffold with ordered cell scale fibers for bone tissue engineering.
    Li K; Zhang F; Wang D; Qiu Q; Liu M; Yu A; Cui Y
    Int J Biol Macromol; 2021 Mar; 172():124-132. PubMed ID: 33418047
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.
    He J; Xia P; Li D
    Biofabrication; 2016 Aug; 8(3):035008. PubMed ID: 27490377
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique.
    Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES
    J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrohydrodynamic 3D printing of microscale poly (ε-caprolactone) scaffolds with multi-walled carbon nanotubes.
    He J; Xu F; Dong R; Guo B; Li D
    Biofabrication; 2017 Jan; 9(1):015007. PubMed ID: 28052044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold.
    Li K; Wang D; Zhang F; Wang X; Chen H; Yu A; Cui Y; Dong C
    Nanomaterials (Basel); 2021 Oct; 11(10):. PubMed ID: 34685135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering.
    Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fabrication and evaluation of electrohydrodynamic jet 3D printed polycaprolactone/chitosan cell carriers using human embryonic stem cell-derived fibroblasts.
    Wu Y; Sriram G; Fawzy AS; Fuh JY; Rosa V; Cao T; Wong YS
    J Biomater Appl; 2016 Aug; 31(2):181-92. PubMed ID: 27252227
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrohydrodynamic jet 3D printing in biomedical applications.
    Wu Y
    Acta Biomater; 2021 Jul; 128():21-41. PubMed ID: 33905945
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Melt electrowriting of PLA, PCL, and composite PLA/PCL scaffolds for tissue engineering application.
    Shahverdi M; Seifi S; Akbari A; Mohammadi K; Shamloo A; Movahhedy MR
    Sci Rep; 2022 Nov; 12(1):19935. PubMed ID: 36402790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 3D-Printed PCL/rGO Conductive Scaffolds for Peripheral Nerve Injury Repair.
    Vijayavenkataraman S; Thaharah S; Zhang S; Lu WF; Fuh JYH
    Artif Organs; 2019 May; 43(5):515-523. PubMed ID: 30229979
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineered Nanotopography on the Microfibers of 3D-Printed PCL Scaffolds to Modulate Cellular Responses and Establish an
    Jing L; Wang X; Leng B; Zhan N; Liu H; Wang S; Lu Y; Sun J; Huang D
    ACS Appl Bio Mater; 2021 Feb; 4(2):1381-1394. PubMed ID: 35014489
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D Printed Polycaprolactone Carbon Nanotube Composite Scaffolds for Cardiac Tissue Engineering.
    Ho CM; Mishra A; Lin PT; Ng SH; Yeong WY; Kim YJ; Yoon YJ
    Macromol Biosci; 2017 Apr; 17(4):. PubMed ID: 27892655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Shape fidelity, mechanical and biological performance of 3D printed polycaprolactone-bioactive glass composite scaffolds.
    Baier RV; Contreras Raggio JI; Giovanetti CM; Palza H; Burda I; Terrasi G; Weisse B; De Freitas GS; Nyström G; Vivanco JF; Aiyangar AK
    Biomater Adv; 2022 Mar; 134():112540. PubMed ID: 35525740
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.
    Hung KC; Tseng CS; Dai LG; Hsu SH
    Biomaterials; 2016 Mar; 83():156-68. PubMed ID: 26774563
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct E-jet printing of three-dimensional fibrous scaffold for tendon tissue engineering.
    Wu Y; Wang Z; Ying Hsi Fuh J; San Wong Y; Wang W; San Thian E
    J Biomed Mater Res B Appl Biomater; 2017 Apr; 105(3):616-627. PubMed ID: 26671608
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrohydrodynamic 3D printing of layer-specifically oriented, multiscale conductive scaffolds for cardiac tissue engineering.
    Lei Q; He J; Li D
    Nanoscale; 2019 Aug; 11(32):15195-15205. PubMed ID: 31380883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zein Increases the Cytoaffinity and Biodegradability of Scaffolds 3D-Printed with Zein and Poly(ε-caprolactone) Composite Ink.
    Jing L; Wang X; Liu H; Lu Y; Bian J; Sun J; Huang D
    ACS Appl Mater Interfaces; 2018 Jun; 10(22):18551-18559. PubMed ID: 29763548
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lithium Chloride-Releasing 3D Printed Scaffold for Enhanced Cartilage Regeneration.
    Li J; Yao Q; Xu Y; Zhang H; Li LL; Wang L
    Med Sci Monit; 2019 May; 25():4041-4050. PubMed ID: 31147532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrohydrodynamic printing of submicron-microscale hybrid scaffolds with improved cellular adhesion and proliferation behaviors.
    Zhang B; Li S; He J; Lei Q; Wu C; Song A; Zhang C
    Nanotechnology; 2022 Dec; 34(10):. PubMed ID: 36562511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.