BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

403 related articles for article (PubMed ID: 32070802)

  • 1. Empowering crop resilience to environmental multiple stress through the modulation of key response components.
    Cappetta E; Andolfo G; Di Matteo A; Ercolano MR
    J Plant Physiol; 2020; 246-247():153134. PubMed ID: 32070802
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ethylene Response Factor (ERF) Family Proteins in Abiotic Stresses and CRISPR-Cas9 Genome Editing of ERFs for Multiple Abiotic Stress Tolerance in Crop Plants: A Review.
    Debbarma J; Sarki YN; Saikia B; Boruah HPD; Singha DL; Chikkaputtaiah C
    Mol Biotechnol; 2019 Feb; 61(2):153-172. PubMed ID: 30600447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Tuning Beforehand: A Foresight on RNA Interference (RNAi) and In Vitro-Derived dsRNAs to Enhance Crop Resilience to Biotic and Abiotic Stresses.
    Abdellatef E; Kamal NM; Tsujimoto H
    Int J Mol Sci; 2021 Jul; 22(14):. PubMed ID: 34299307
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcription Factors Associated with Abiotic and Biotic Stress Tolerance and Their Potential for Crops Improvement.
    Baillo EH; Kimotho RN; Zhang Z; Xu P
    Genes (Basel); 2019 Sep; 10(10):. PubMed ID: 31575043
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hormone balance and abiotic stress tolerance in crop plants.
    Peleg Z; Blumwald E
    Curr Opin Plant Biol; 2011 Jun; 14(3):290-5. PubMed ID: 21377404
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant behaviour under combined stress: tomato responses to combined salinity and pathogen stress.
    Bai Y; Kissoudis C; Yan Z; Visser RGF; van der Linden G
    Plant J; 2018 Feb; 93(4):781-793. PubMed ID: 29237240
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving crop stress tolerance and improvement--an overview of genomic techniques.
    Rasool S; Ahmad P; Rehman MU; Arif A; Anjum NA
    Appl Biochem Biotechnol; 2015 Dec; 177(7):1395-408. PubMed ID: 26440315
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The interaction of plant biotic and abiotic stresses: from genes to the field.
    Atkinson NJ; Urwin PE
    J Exp Bot; 2012 Jun; 63(10):3523-43. PubMed ID: 22467407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combinatorial Interactions of Biotic and Abiotic Stresses in Plants and Their Molecular Mechanisms: Systems Biology Approach.
    Dangi AK; Sharma B; Khangwal I; Shukla P
    Mol Biotechnol; 2018 Aug; 60(8):636-650. PubMed ID: 29943149
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plant Immune System: Crosstalk Between Responses to Biotic and Abiotic Stresses the Missing Link in Understanding Plant Defence.
    Nejat N; Mantri N
    Curr Issues Mol Biol; 2017; 23():1-16. PubMed ID: 28154243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of microRNAs in biotic and abiotic stress responses in crop plants.
    Kumar R
    Appl Biochem Biotechnol; 2014 Sep; 174(1):93-115. PubMed ID: 24869742
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of Arabidopsis candidate genes in response to biotic and abiotic stresses using comparative microarrays.
    Sham A; Moustafa K; Al-Ameri S; Al-Azzawi A; Iratni R; AbuQamar S
    PLoS One; 2015; 10(5):e0125666. PubMed ID: 25933420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Systems biology approach in plant abiotic stresses.
    Mohanta TK; Bashir T; Hashem A; Abd Allah EF
    Plant Physiol Biochem; 2017 Dec; 121():58-73. PubMed ID: 29096174
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches.
    Sreenivasulu N; Sopory SK; Kavi Kishor PB
    Gene; 2007 Feb; 388(1-2):1-13. PubMed ID: 17134853
    [TBL] [Abstract][Full Text] [Related]  

  • 15. miRNAs: Major modulators for crop growth and development under abiotic stresses.
    Noman A; Fahad S; Aqeel M; Ali U; Amanullah ; Anwar S; Baloch SK; Zainab M
    Biotechnol Lett; 2017 May; 39(5):685-700. PubMed ID: 28238061
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elucidating the Response of Crop Plants towards Individual, Combined and Sequentially Occurring Abiotic Stresses.
    Anwar K; Joshi R; Dhankher OP; Singla-Pareek SL; Pareek A
    Int J Mol Sci; 2021 Jun; 22(11):. PubMed ID: 34204152
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An update on redox signals in plant responses to biotic and abiotic stress crosstalk: insights from cadmium and fungal pathogen interactions.
    Romero-Puertas MC; Terrón-Camero LC; Peláez-Vico MÁ; Molina-Moya E; Sandalio LM
    J Exp Bot; 2021 Aug; 72(16):5857-5875. PubMed ID: 34111283
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cross-tolerance to biotic and abiotic stresses in plants: a focus on resistance to aphid infestation.
    Foyer CH; Rasool B; Davey JW; Hancock RD
    J Exp Bot; 2016 Mar; 67(7):2025-37. PubMed ID: 26936830
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chromosomal Distribution of Genes Conferring Tolerance to Abiotic Stresses Versus That of Genes Controlling Resistance to Biotic Stresses in Plants.
    Wang RR
    Int J Mol Sci; 2020 Mar; 21(5):. PubMed ID: 32155784
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.