These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 32070898)
1. Enzymatic treatment improves fast pyrolysis product selectivity of softwood and hardwood lignin. Wang L; Ni H; Zhang J; Shi Q; Zhang R; Yu H; Li M Sci Total Environ; 2020 May; 717():137241. PubMed ID: 32070898 [TBL] [Abstract][Full Text] [Related]
2. Pyrolysis characteristics and kinetics of lignin derived from enzymatic hydrolysis residue of bamboo pretreated with white-rot fungus. Yan K; Liu F; Chen Q; Ke M; Huang X; Hu W; Zhou B; Zhang X; Yu H Biotechnol Biofuels; 2016; 9():76. PubMed ID: 27034714 [TBL] [Abstract][Full Text] [Related]
3. Investigating the correlation of biomass recalcitrance with pyrolysis oil using poplar as the feedstock. Lu K; Hao N; Meng X; Luo Z; Tuskan GA; Ragauskas AJ Bioresour Technol; 2019 Oct; 289():121589. PubMed ID: 31207412 [TBL] [Abstract][Full Text] [Related]
4. Effects of synergistic fungal pretreatment on structure and thermal properties of lignin from corncob. You T; Li X; Wang R; Zhang X; Xu F Bioresour Technol; 2019 Jan; 272():123-129. PubMed ID: 30317155 [TBL] [Abstract][Full Text] [Related]
5. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil. Mamaeva A; Tahmasebi A; Tian L; Yu J Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958 [TBL] [Abstract][Full Text] [Related]
6. Volatile-char interactions during biomass pyrolysis: Understanding the potential origin of char activity. Huang Y; Liu S; Akhtar MA; Li B; Zhou J; Zhang S; Zhang H Bioresour Technol; 2020 Nov; 316():123938. PubMed ID: 32758923 [TBL] [Abstract][Full Text] [Related]
7. Potential of genetically engineered hybrid poplar for pyrolytic production of bio-based phenolic compounds. Toraman HE; Vanholme R; Borén E; Vanwonterghem Y; Djokic MR; Yildiz G; Ronsse F; Prins W; Boerjan W; Van Geem KM; Marin GB Bioresour Technol; 2016 May; 207():229-36. PubMed ID: 26890798 [TBL] [Abstract][Full Text] [Related]
8. Effect of deep eutectic solvents-regulated lignin structure on subsequent pyrolysis products selectivity. Li T; Yin Y; Wu S; Du X Bioresour Technol; 2022 Jan; 343():126120. PubMed ID: 34695590 [TBL] [Abstract][Full Text] [Related]
9. Biodegradation of hardwood lignocellulosics by the western poplar clearwing borer, Paranthrene robiniae (Hy. Edwards). Ke J; Laskar DD; Chen S Biomacromolecules; 2011 May; 12(5):1610-20. PubMed ID: 21405063 [TBL] [Abstract][Full Text] [Related]
10. Production of an upgraded lignin-derived bio-oil using the clay catalysts of bentonite and olivine and the spent FCC in a bench-scale fixed bed pyrolyzer. Ro D; Shafaghat H; Jang SH; Lee HW; Jung SC; Jae J; Cha JS; Park YK Environ Res; 2019 May; 172():658-664. PubMed ID: 30878737 [TBL] [Abstract][Full Text] [Related]
11. Pyrolysis and copyrolysis of three lignocellulosic biomass residues from the agro-food industry: A comparative study. Fermanelli CS; Córdoba A; Pierella LB; Saux C Waste Manag; 2020 Feb; 102():362-370. PubMed ID: 31731255 [TBL] [Abstract][Full Text] [Related]
12. In situ observation of radicals and molecular products during lignin pyrolysis. Bährle C; Custodis V; Jeschke G; van Bokhoven JA; Vogel F ChemSusChem; 2014 Jul; 7(7):2022-9. PubMed ID: 25044866 [TBL] [Abstract][Full Text] [Related]
13. Influence of inherent hierarchical porous char with alkali and alkaline earth metallic species on lignin pyrolysis. Wang S; Li Z; Bai X; Yi W; Fu P Bioresour Technol; 2018 Nov; 268():323-331. PubMed ID: 30092486 [TBL] [Abstract][Full Text] [Related]
14. Improved lignin pyrolysis for phenolics production in a bubbling bed reactor--Effect of bed materials. Li D; Briens C; Berruti F Bioresour Technol; 2015; 189():7-14. PubMed ID: 25863324 [TBL] [Abstract][Full Text] [Related]
15. Interaction of the lignin-/cellulose-derived char with volatiles of varied origin: Part of the process for evolution of products in pyrolysis. Chen Y; Li C; Zhang L; Chen Q; Zhang S; Xiang J; Hu S; Wang Y; Hu X Chemosphere; 2023 Sep; 336():139248. PubMed ID: 37330062 [TBL] [Abstract][Full Text] [Related]
16. Impacts of temperature on evolution of char structure during pyrolysis of lignin. Zhang C; Shao Y; Zhang L; Zhang S; Westerhof RJM; Liu Q; Jia P; Li Q; Wang Y; Hu X Sci Total Environ; 2020 Jan; 699():134381. PubMed ID: 31677466 [TBL] [Abstract][Full Text] [Related]
17. Comparative study on pyrolysis of lignocellulosic and algal biomass using a thermogravimetric and a fixed-bed reactor. Yuan T; Tahmasebi A; Yu J Bioresour Technol; 2015 Jan; 175():333-41. PubMed ID: 25459840 [TBL] [Abstract][Full Text] [Related]
18. Fungal Selectivity and Biodegradation Effects by White and Brown Rot Fungi for Wood Biomass Pretreatment. Qi J; Li F; Jia L; Zhang X; Deng S; Luo B; Zhou Y; Fan M; Xia Y Polymers (Basel); 2023 Apr; 15(8):. PubMed ID: 37112109 [TBL] [Abstract][Full Text] [Related]
19. Chemical characteristics and enzymatic saccharification of lignocellulosic biomass treated using high-temperature saturated steam: comparison of softwood and hardwood. Asada C; Sasaki C; Hirano T; Nakamura Y Bioresour Technol; 2015 Apr; 182():245-250. PubMed ID: 25704097 [TBL] [Abstract][Full Text] [Related]
20. Fast pyrolysis of potassium impregnated poplar wood and characterization of its influence on the formation as well as properties of pyrolytic products. Hwang H; Oh S; Cho TS; Choi IG; Choi JW Bioresour Technol; 2013 Dec; 150():359-66. PubMed ID: 24185037 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]