These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
101 related articles for article (PubMed ID: 32070952)
21. Viscoelastic and anisotropic mechanical properties of in vivo muscle tissue assessed by supersonic shear imaging. Gennisson JL; Deffieux T; Macé E; Montaldo G; Fink M; Tanter M Ultrasound Med Biol; 2010 May; 36(5):789-801. PubMed ID: 20420970 [TBL] [Abstract][Full Text] [Related]
22. Influence of the bubble-bubble interaction on destruction of encapsulated microbubbles under ultrasound. Yasui K; Lee J; Tuziuti T; Towata A; Kozuka T; Iida Y J Acoust Soc Am; 2009 Sep; 126(3):973-82. PubMed ID: 19739710 [TBL] [Abstract][Full Text] [Related]
23. Shear wave spectroscopy for in vivo quantification of human soft tissues visco-elasticity. Deffieux T; Montaldo G; Tanter M; Fink M IEEE Trans Med Imaging; 2009 Mar; 28(3):313-22. PubMed ID: 19244004 [TBL] [Abstract][Full Text] [Related]
24. Acoustic radiation force impulse and supersonic shear imaging versus transient elastography for liver fibrosis assessment. Sporea I; Bota S; Jurchis A; Sirli R; Grădinaru-Tascău O; Popescu A; Ratiu I; Szilaski M Ultrasound Med Biol; 2013 Nov; 39(11):1933-41. PubMed ID: 23932281 [TBL] [Abstract][Full Text] [Related]
25. Building an open-source simulation platform of acoustic radiation force-based breast elastography. Wang Y; Peng B; Jiang J Phys Med Biol; 2017 Mar; 62(5):1949-1968. PubMed ID: 28075330 [TBL] [Abstract][Full Text] [Related]
26. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis. Jiang Y; Li G; Qian LX; Liang S; Destrade M; Cao Y Biomech Model Mechanobiol; 2015 Oct; 14(5):1119-28. PubMed ID: 25697960 [TBL] [Abstract][Full Text] [Related]
27. Assessment of liver fibrosis with 2-D shear wave elastography in comparison to transient elastography and acoustic radiation force impulse imaging in patients with chronic liver disease. Gerber L; Kasper D; Fitting D; Knop V; Vermehren A; Sprinzl K; Hansmann ML; Herrmann E; Bojunga J; Albert J; Sarrazin C; Zeuzem S; Friedrich-Rust M Ultrasound Med Biol; 2015 Sep; 41(9):2350-9. PubMed ID: 26116161 [TBL] [Abstract][Full Text] [Related]
28. Shear wave elasticity imaging: a new ultrasonic technology of medical diagnostics. Sarvazyan AP; Rudenko OV; Swanson SD; Fowlkes JB; Emelianov SY Ultrasound Med Biol; 1998 Nov; 24(9):1419-35. PubMed ID: 10385964 [TBL] [Abstract][Full Text] [Related]
30. Quasi-plane shear wave propagation induced by acoustic radiation force with a focal line region: a simulation study. Guo M; Abbott D; Lu M; Liu H Australas Phys Eng Sci Med; 2016 Mar; 39(1):187-97. PubMed ID: 26768475 [TBL] [Abstract][Full Text] [Related]
31. Imaging of shear waves induced by Lorentz force in soft tissues. Grasland-Mongrain P; Souchon R; Cartellier F; Zorgani A; Chapelon JY; Lafon C; Catheline S Phys Rev Lett; 2014 Jul; 113(3):038101. PubMed ID: 25083665 [TBL] [Abstract][Full Text] [Related]
32. Quantifying elasticity and viscosity from measurement of shear wave speed dispersion. Chen S; Fatemi M; Greenleaf JF J Acoust Soc Am; 2004 Jun; 115(6):2781-5. PubMed ID: 15237800 [TBL] [Abstract][Full Text] [Related]
33. Noninvasive Evaluation of Liver Fibrosis: Supersonic Shear Imaging or Acoustic Radiation Force Impulse Imaging? Karagoz E; Ozturker C; Sonmez G Radiology; 2016 Jun; 279(3):979-80. PubMed ID: 27183412 [No Abstract] [Full Text] [Related]
34. The estimation of elasticity and viscosity of soft tissues in vitro using the data of remote acoustic palpation. Girnyk S; Barannik A; Barannik E; Tovstiak V; Marusenko A; Volokhov V Ultrasound Med Biol; 2006 Feb; 32(2):211-9. PubMed ID: 16464667 [TBL] [Abstract][Full Text] [Related]
35. A finite-element method model of soft tissue response to impulsive acoustic radiation force. Palmeri ML; Sharma AC; Bouchard RR; Nightingale RW; Nightingale KR IEEE Trans Ultrason Ferroelectr Freq Control; 2005 Oct; 52(10):1699-712. PubMed ID: 16382621 [TBL] [Abstract][Full Text] [Related]
36. Acoustic radiation force impulse imaging for evaluation of renal parenchyma elasticity in diabetic nephropathy. Goya C; Kilinc F; Hamidi C; Yavuz A; Yildirim Y; Cetincakmak MG; Hattapoglu S AJR Am J Roentgenol; 2015 Feb; 204(2):324-9. PubMed ID: 25615754 [TBL] [Abstract][Full Text] [Related]
37. The influence of viscosity on the shear strain remotely induced by focused ultrasound in viscoelastic media. Barannik EA; Girnyk SA; Tovstiak VV; Marusenko AI; Volokhov VA; Sarvazyan AP; Emelianov SY J Acoust Soc Am; 2004 May; 115(5 Pt 1):2358-64. PubMed ID: 15139649 [TBL] [Abstract][Full Text] [Related]
38. Viscoelasticity Mapping by Identification of Local Shear Wave Dynamics. van Sloun RJG; Wildeboer RR; Wijkstra H; Mischi M IEEE Trans Ultrason Ferroelectr Freq Control; 2017 Nov; 64(11):1666-1673. PubMed ID: 28841556 [TBL] [Abstract][Full Text] [Related]
39. Investigating liver stiffness and viscosity for fibrosis, steatosis and activity staging using shear wave elastography. Deffieux T; Gennisson JL; Bousquet L; Corouge M; Cosconea S; Amroun D; Tripon S; Terris B; Mallet V; Sogni P; Tanter M; Pol S J Hepatol; 2015 Feb; 62(2):317-24. PubMed ID: 25251998 [TBL] [Abstract][Full Text] [Related]
40. Temperature dependent of viscoelasticity measurement on fat emulsion phantom using acoustic radiation force elasticity imaging method. Xie P; Wang M; Guo Y; Wen H; Chen X; Chen S; Lin H Technol Health Care; 2018; 26(S1):449-458. PubMed ID: 29758968 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]