BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 32071014)

  • 1. Hierarchical Class Incremental Learning of Anatomical Structures in Fetal Echocardiography Videos.
    Patra A; Noble JA
    IEEE J Biomed Health Inform; 2020 Apr; 24(4):1046-1058. PubMed ID: 32071014
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fetal Congenital Heart Disease Echocardiogram Screening Based on DGACNN: Adversarial One-Class Classification Combined with Video Transfer Learning.
    Gong Y; Zhang Y; Zhu H; Lv J; Cheng Q; Zhang H; He Y; Wang S
    IEEE Trans Med Imaging; 2020 Apr; 39(4):1206-1222. PubMed ID: 31603775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Coarse-Fine Collaborative Learning Model for Three Vessel Segmentation in Fetal Cardiac Ultrasound Images.
    Ling S; Yan L; Mao R; Li J; Xi H; Wang F; Li X; He M
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4036-4047. PubMed ID: 38635389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Clinical workflow of sonographers performing fetal anomaly ultrasound scans: deep-learning-based analysis.
    Drukker L; Sharma H; Karim JN; Droste R; Noble JA; Papageorghiou AT
    Ultrasound Obstet Gynecol; 2022 Dec; 60(6):759-765. PubMed ID: 35726505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A systematic analysis of the feasibility of four-dimensional ultrasound imaging using spatiotemporal image correlation in routine fetal echocardiography.
    Uittenbogaard LB; Haak MC; Spreeuwenberg MD; Van Vugt JM
    Ultrasound Obstet Gynecol; 2008 Jun; 31(6):625-32. PubMed ID: 18504769
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Anatomical structure segmentation from early fetal ultrasound sequences using global pollination CAT swarm optimizer-based Chan-Vese model.
    Femina MA; Raajagopalan SP
    Med Biol Eng Comput; 2019 Aug; 57(8):1763-1782. PubMed ID: 31190201
    [TBL] [Abstract][Full Text] [Related]  

  • 7. HFSCCD: A Hybrid Neural Network for Fetal Standard Cardiac Cycle Detection in Ultrasound Videos.
    Pu B; Li K; Chen J; Lu Y; Zeng Q; Yang J; Li S
    IEEE J Biomed Health Inform; 2024 May; 28(5):2943-2954. PubMed ID: 38412077
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prospective evaluation of the fetal heart using Fetal Intelligent Navigation Echocardiography (FINE).
    Garcia M; Yeo L; Romero R; Haggerty D; Giardina I; Hassan SS; Chaiworapongsa T; Hernandez-Andrade E
    Ultrasound Obstet Gynecol; 2016 Apr; 47(4):450-9. PubMed ID: 26278116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine Learning in Fetal Cardiology: What to Expect.
    Garcia-Canadilla P; Sanchez-Martinez S; Crispi F; Bijnens B
    Fetal Diagn Ther; 2020; 47(5):363-372. PubMed ID: 31910421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Color and power Doppler combined with Fetal Intelligent Navigation Echocardiography (FINE) to evaluate the fetal heart.
    Yeo L; Romero R
    Ultrasound Obstet Gynecol; 2017 Oct; 50(4):476-491. PubMed ID: 28809063
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the use of contrastive learning for standard-plane classification in fetal ultrasound imaging.
    Migliorelli G; Fiorentino MC; Di Cosmo M; Villani FP; Mancini A; Moccia S
    Comput Biol Med; 2024 May; 174():108430. PubMed ID: 38613892
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multi-task learning for quality assessment of fetal head ultrasound images.
    Lin Z; Li S; Ni D; Liao Y; Wen H; Du J; Chen S; Wang T; Lei B
    Med Image Anal; 2019 Dec; 58():101548. PubMed ID: 31525671
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improving the Quality of Fetal Heart Ultrasound Imaging With Multihead Enhanced Self-Attention and Contrastive Learning.
    Zhang Y; Zhu H; Cheng J; Wang J; Gu X; Han J; Zhang Y; Zhao Y; He Y; Zhang H
    IEEE J Biomed Health Inform; 2023 Nov; 27(11):5518-5529. PubMed ID: 37556337
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Fetal echocardiography. II. Normal and pathological anatomy in real-time ultrasonography].
    Chaoui R; Bollmann R; Hoffmann H; Göldner B; Bartel J
    Zentralbl Gynakol; 1991; 113(22):1211-20. PubMed ID: 1755258
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Extending pretrained segmentation networks with additional anatomical structures.
    Ozdemir F; Goksel O
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1187-1195. PubMed ID: 31049802
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Usefulness of gated three-dimensional fetal echocardiography to reconstruct and display structures not visualized with two-dimensional imaging.
    Sklansky MS; Nelson TR; Pretorius DH
    Am J Cardiol; 1997 Sep; 80(5):665-8. PubMed ID: 9295008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Examination of the fetal heart by four-dimensional (4D) ultrasound with spatio-temporal image correlation (STIC).
    Gonçalves LF; Lee W; Espinoza J; Romero R
    Ultrasound Obstet Gynecol; 2006 Mar; 27(3):336-48. PubMed ID: 16482611
    [No Abstract]   [Full Text] [Related]  

  • 18. Dual-Channel Prototype Network for Few-Shot Pathology Image Classification.
    Quan H; Li X; Hu D; Nan T; Cui X
    IEEE J Biomed Health Inform; 2024 Jul; 28(7):4132-4144. PubMed ID: 38587946
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decision Fusion-Based Fetal Ultrasound Image Plane Classification Using Convolutional Neural Networks.
    Sridar P; Kumar A; Quinton A; Nanan R; Kim J; Krishnakumar R
    Ultrasound Med Biol; 2019 May; 45(5):1259-1273. PubMed ID: 30826153
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Three- and four-dimensional fetal echocardiography.
    Turan S; Turan O; Baschat AA
    Fetal Diagn Ther; 2009; 25(4):361-72. PubMed ID: 19786781
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.