These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
212 related articles for article (PubMed ID: 32071147)
1. Tandem Mass Tag Approach Utilizing Pervanadate BOOST Channels Delivers Deeper Quantitative Characterization of the Tyrosine Phosphoproteome. Chua XY; Mensah T; Aballo T; Mackintosh SG; Edmondson RD; Salomon AR Mol Cell Proteomics; 2020 Apr; 19(4):730-743. PubMed ID: 32071147 [TBL] [Abstract][Full Text] [Related]
2. One-Step SH2 Superbinder-Based Approach for Sensitive Analysis of Tyrosine Phosphoproteome. Yao Y; Wang Y; Wang S; Liu X; Liu Z; Li Y; Fang Z; Mao J; Zheng Y; Ye M J Proteome Res; 2019 Apr; 18(4):1870-1879. PubMed ID: 30875230 [TBL] [Abstract][Full Text] [Related]
3. Ultra-deep tyrosine phosphoproteomics enabled by a phosphotyrosine superbinder. Bian Y; Li L; Dong M; Liu X; Kaneko T; Cheng K; Liu H; Voss C; Cao X; Wang Y; Litchfield D; Ye M; Li SS; Zou H Nat Chem Biol; 2016 Nov; 12(11):959-966. PubMed ID: 27642862 [TBL] [Abstract][Full Text] [Related]
5. High-Density, Targeted Monitoring of Tyrosine Phosphorylation Reveals Activated Signaling Networks in Human Tumors. Stopfer LE; Flower CT; Gajadhar AS; Patel B; Gallien S; Lopez-Ferrer D; White FM Cancer Res; 2021 May; 81(9):2495-2509. PubMed ID: 33509940 [TBL] [Abstract][Full Text] [Related]
6. Sensitive, Robust, and Cost-Effective Approach for Tyrosine Phosphoproteome Analysis. Dong M; Bian Y; Wang Y; Dong J; Yao Y; Deng Z; Qin H; Zou H; Ye M Anal Chem; 2017 Sep; 89(17):9307-9314. PubMed ID: 28796482 [TBL] [Abstract][Full Text] [Related]
7. Deep phosphotyrosine characterisation of primary murine T cells using broad spectrum optimisation of selective triggering. Callahan A; Chua XY; Griffith AA; Hildebrandt T; Fu G; Hu M; Wen R; Salomon AR Proteomics; 2024 Dec; 24(23-24):e2400106. PubMed ID: 39091061 [TBL] [Abstract][Full Text] [Related]
8. SH2 Superbinder Modified Monolithic Capillary Column for the Sensitive Analysis of Protein Tyrosine Phosphorylation. Yao Y; Bian Y; Dong M; Wang Y; Lv J; Chen L; Wang H; Mao J; Dong J; Ye M J Proteome Res; 2018 Jan; 17(1):243-251. PubMed ID: 29083189 [TBL] [Abstract][Full Text] [Related]
9. A Tyrosine Phosphoproteome Analysis Approach Enabled by Selective Dephosphorylation with Protein Tyrosine Phosphatase. Liu X; Dong M; Yao Y; Wang Y; Mao J; Hu L; Yao L; Ye M Anal Chem; 2022 Mar; 94(10):4155-4164. PubMed ID: 35239328 [TBL] [Abstract][Full Text] [Related]
10. Integrated and High-Throughput Approach for Sensitive Analysis of Tyrosine Phosphoproteome. Kong Q; Weng Y; Zheng Z; Chen W; Li P; Cai Z; Tian R Anal Chem; 2022 Oct; 94(40):13728-13736. PubMed ID: 36179360 [TBL] [Abstract][Full Text] [Related]
11. Optimization of immunoaffinity enrichment and detection: toward a comprehensive characterization of the phosphotyrosine proteome of K562 cells by liquid chromatography-mass spectrometry. Artemenko KA; Bergström Lind S; Elfineh L; Mayrhofer C; Zubarev RA; Bergquist J; Pettersson U Analyst; 2011 May; 136(9):1971-8. PubMed ID: 21403953 [TBL] [Abstract][Full Text] [Related]
12. Ovalbumin Antigen-Specific Activation of Human T Cell Receptor Closely Resembles Soluble Antibody Stimulation as Revealed by BOOST Phosphotyrosine Proteomics. Chua XY; Salomon A J Proteome Res; 2021 Jun; 20(6):3330-3344. PubMed ID: 34018748 [TBL] [Abstract][Full Text] [Related]
13. Quantitative Consequences of Protein Carriers in Immunopeptidomics and Tyrosine Phosphorylation MS Stopfer LE; Conage-Pough JE; White FM Mol Cell Proteomics; 2021; 20():100104. PubMed ID: 34052394 [TBL] [Abstract][Full Text] [Related]
14. Mapping Plant Phosphoproteome with Improved Tandem MOAC and Label-Free Quantification. Chen Y; Liang X Methods Mol Biol; 2021; 2358():105-112. PubMed ID: 34270049 [TBL] [Abstract][Full Text] [Related]
15. Identification of Phosphorylated Cyclin-Dependent Kinase 1 Associated with Colorectal Cancer Survival Using Label-Free Quantitative Analyses. Lin PC; Yang YF; Tyan YC; Hsiao ES; Chu PC; Lee CT; Lee JC; Chen YM; Liao PC PLoS One; 2016; 11(7):e0158844. PubMed ID: 27383761 [TBL] [Abstract][Full Text] [Related]
16. Limits for Resolving Isobaric Tandem Mass Tag Reporter Ions Using Phase-Constrained Spectrum Deconvolution. Kelstrup CD; Aizikov K; Batth TS; Kreutzman A; Grinfeld D; Lange O; Mourad D; Makarov AA; Olsen JV J Proteome Res; 2018 Nov; 17(11):4008-4016. PubMed ID: 30220210 [TBL] [Abstract][Full Text] [Related]
17. Biphasic Affinity Chromatographic Approach for Deep Tyrosine Phosphoproteome Analysis. Deng Z; Dong M; Wang Y; Dong J; Li SS; Zou H; Ye M Anal Chem; 2017 Feb; 89(4):2405-2410. PubMed ID: 28192900 [TBL] [Abstract][Full Text] [Related]
18. Dynamic Phosphotyrosine-Dependent Signaling Profiling in Living Cells by Two-Dimensional Proximity Proteomics. Kong Q; Ke M; Weng Y; Qin Y; He A; Li P; Cai Z; Tian R J Proteome Res; 2022 Nov; 21(11):2727-2735. PubMed ID: 36280823 [TBL] [Abstract][Full Text] [Related]
19. Tyrosine phosphoproteomics and identification of substrates of protein tyrosine phosphatase dPTP61F in Drosophila S2 cells by mass spectrometry-based substrate trapping strategy. Chang YC; Lin SY; Liang SY; Pan KT; Chou CC; Chen CH; Liao CL; Khoo KH; Meng TC J Proteome Res; 2008 Mar; 7(3):1055-66. PubMed ID: 18281928 [TBL] [Abstract][Full Text] [Related]
20. Global impact of oncogenic Src on a phosphotyrosine proteome. Luo W; Slebos RJ; Hill S; Li M; Brábek J; Amanchy R; Chaerkady R; Pandey A; Ham AJ; Hanks SK J Proteome Res; 2008 Aug; 7(8):3447-60. PubMed ID: 18563927 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]