BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 32071225)

  • 1. Tunable and precise miniature lithium heater for point-of-care applications.
    Udugama B; Kadhiresan P; Chan WCW
    Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4632-4641. PubMed ID: 32071225
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multistage Chemical Heating for Instrument-Free Biosensing.
    Goertz JP; Colvin KM; Lippe AB; Daristotle JL; Kofinas P; White IM
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33043-33048. PubMed ID: 30207445
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Precision chemical heating for diagnostic devices.
    Buser JR; Diesburg S; Singleton J; Guelig D; Bishop JD; Zentner C; Burton R; LaBarre P; Yager P; Weigl BH
    Lab Chip; 2015 Dec; 15(23):4423-32. PubMed ID: 26503640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simple Approach to High-Performance Stretchable Heaters Based on Kirigami Patterning of Conductive Paper for Wearable Thermotherapy Applications.
    Jang NS; Kim KH; Ha SH; Jung SH; Lee HM; Kim JM
    ACS Appl Mater Interfaces; 2017 Jun; 9(23):19612-19621. PubMed ID: 28534393
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transparent, Flexible Heater Based on Hybrid 2D Platform of Graphene and Dry-Spun Carbon Nanotubes.
    Li L; Hong SK; Jo Y; Tian M; Woo CY; Kim SH; Kim JM; Lee HW
    ACS Appl Mater Interfaces; 2019 May; 11(17):16223-16232. PubMed ID: 30969110
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Versatile printed microheaters to enable low-power thermal control in paper diagnostics.
    Byers KM; Lin LK; Moehling TJ; Stanciu L; Linnes JC
    Analyst; 2019 Dec; 145(1):184-196. PubMed ID: 31729492
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrical and Thermal Properties of Heater-Sensor Microsystems Patterned in TCO Films for Wide-Range Temperature Applications from 15 K to 350 K.
    Pawlak R; Lebioda M
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874822
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Printed fabric heater based on Ag nanowire/carbon nanotube composites.
    Ahn J; Gu J; Hwang B; Kang H; Hwang S; Jeon S; Jeong J; Park I
    Nanotechnology; 2019 Nov; 30(45):455707. PubMed ID: 31349233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prevention of hot tap water burns--a study of electric immersion heater safety.
    Stephen FR; Murray JP
    Burns; 1991 Oct; 17(5):417-22. PubMed ID: 1760115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multi-kilowatt-class heaters for large hollow cathodes.
    Wordingham CJ; Taunay PCR; Choueiri EY
    Rev Sci Instrum; 2018 Jul; 89(7):075108. PubMed ID: 30068105
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conducting Elevated Temperature Normal and Combined Pressure-Shear Plate Impact Experiments Via a Breech-end Sabot Heater System.
    Zuanetti B; Wang T; Prakash V
    J Vis Exp; 2018 Aug; (138):. PubMed ID: 30148493
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-Dimensional Printable High-Temperature and High-Rate Heaters.
    Yao Y; Fu KK; Yan C; Dai J; Chen Y; Wang Y; Zhang B; Hitz E; Hu L
    ACS Nano; 2016 May; 10(5):5272-9. PubMed ID: 27152732
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of heated seat and foot heater on thermal comfort and heater energy consumption in vehicle.
    Oi H; Yanagi K; Tabata K; Tochihara Y
    Ergonomics; 2011 Aug; 54(8):690-9. PubMed ID: 21846308
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A high-response transparent heater based on a CuS nanosheet film with superior mechanical flexibility and chemical stability.
    Xie S; Li T; Xu Z; Wang Y; Liu X; Guo W
    Nanoscale; 2018 Apr; 10(14):6531-6538. PubMed ID: 29577128
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Field torso-warming modalities: a comparative study using a human model.
    Lundgren JP; Henriksson O; Pretorius T; Cahill F; Bristow G; Chochinov A; Pretorius A; Bjornstig U; Giesbrecht GG
    Prehosp Emerg Care; 2009; 13(3):371-8. PubMed ID: 19499476
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on the Relative Placement Angle of the Induction Heater and the Channel in a Four-Channel Induction-Heating Tundish.
    Chen X; Wang P; Xiao H; Lei S; Tang H; Zhang J
    Materials (Basel); 2024 Jun; 17(12):. PubMed ID: 38930380
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Water heater temperature set point and water use patterns influence Legionella pneumophila and associated microorganisms at the tap.
    Rhoads WJ; Ji P; Pruden A; Edwards MA
    Microbiome; 2015 Dec; 3():67. PubMed ID: 26627188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrated 3D printed heaters for microfluidic applications: Ammonium analysis within environmental water.
    Fornells E; Murray E; Waheed S; Morrin A; Diamond D; Paull B; Breadmore M
    Anal Chim Acta; 2020 Feb; 1098():94-101. PubMed ID: 31948591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of distributed resistive metal film heaters in thermally tunable dispersion compensators for high-bit-rate communication systems.
    Steinvurzel P; MacHarrie RA; Baldwin KW; Van Hise CW; Eggleton BJ; Rogers JA
    Appl Opt; 2005 May; 44(14):2782-91. PubMed ID: 15943330
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A super flexible and custom-shaped graphene heater.
    Zhang TY; Zhao HM; Wang DY; Wang Q; Pang Y; Deng NQ; Cao HW; Yang Y; Ren TL
    Nanoscale; 2017 Oct; 9(38):14357-14363. PubMed ID: 28726939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.