These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
390 related articles for article (PubMed ID: 32071240)
1. GDF11 promotes osteogenesis as opposed to MSTN, and follistatin, a MSTN/GDF11 inhibitor, increases muscle mass but weakens bone. Suh J; Kim NK; Lee SH; Eom JH; Lee Y; Park JC; Woo KM; Baek JH; Kim JE; Ryoo HM; Lee SJ; Lee YS Proc Natl Acad Sci U S A; 2020 Mar; 117(9):4910-4920. PubMed ID: 32071240 [TBL] [Abstract][Full Text] [Related]
2. Similar sequences but dissimilar biological functions of GDF11 and myostatin. Suh J; Lee YS Exp Mol Med; 2020 Oct; 52(10):1673-1693. PubMed ID: 33077875 [TBL] [Abstract][Full Text] [Related]
3. Redundancy of myostatin and growth/differentiation factor 11 function. McPherron AC; Huynh TV; Lee SJ BMC Dev Biol; 2009 Mar; 9():24. PubMed ID: 19298661 [TBL] [Abstract][Full Text] [Related]
4. Regulation of GDF-11 and myostatin activity by GASP-1 and GASP-2. Lee YS; Lee SJ Proc Natl Acad Sci U S A; 2013 Sep; 110(39):E3713-22. PubMed ID: 24019467 [TBL] [Abstract][Full Text] [Related]
5. The Growth Differentiation Factor 11 (GDF11) and Myostatin (MSTN) in tissue specific aging. Fan X; Gaur U; Sun L; Yang D; Yang M Mech Ageing Dev; 2017 Jun; 164():108-112. PubMed ID: 28472635 [TBL] [Abstract][Full Text] [Related]
6. A GDF11/myostatin inhibitor, GDF11 propeptide-Fc, increases skeletal muscle mass and improves muscle strength in dystrophic mdx mice. Jin Q; Qiao C; Li J; Xiao B; Li J; Xiao X Skelet Muscle; 2019 May; 9(1):16. PubMed ID: 31133057 [TBL] [Abstract][Full Text] [Related]
7. Differential Binding Activity of TGF-β Family Proteins to Select TGF-β Receptors. Khalil AM; Dotimas H; Kahn J; Lamerdin JE; Hayes DB; Gupta P; Franti M J Pharmacol Exp Ther; 2016 Sep; 358(3):423-30. PubMed ID: 27340210 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of the WFIKKN2 follistatin domain reveals insight into how it inhibits growth differentiation factor 8 (GDF8) and GDF11. McCoy JC; Walker RG; Murray NH; Thompson TB J Biol Chem; 2019 Apr; 294(16):6333-6343. PubMed ID: 30814254 [TBL] [Abstract][Full Text] [Related]
9. DA-Raf and the MEK inhibitor trametinib reverse skeletal myocyte differentiation inhibition or muscle atrophy caused by myostatin and GDF11 through the non-Smad Ras-ERK pathway. Masuzawa R; Takahashi K; Takano K; Nishino I; Sakai T; Endo T J Biochem; 2022 Jan; 171(1):109-122. PubMed ID: 34676394 [TBL] [Abstract][Full Text] [Related]
10. The effects of concurrent training order on body composition and serum concentrations of follistatin, myostatin and GDF11 in sarcopenic elderly men. Bagheri R; Moghadam BH; Church DD; Tinsley GM; Eskandari M; Moghadam BH; Motevalli MS; Baker JS; Robergs RA; Wong A Exp Gerontol; 2020 May; 133():110869. PubMed ID: 32035222 [TBL] [Abstract][Full Text] [Related]
11. Growing backwards: an inverted role for the shrimp ortholog of vertebrate myostatin and GDF11. De Santis C; Wade NM; Jerry DR; Preston NP; Glencross BD; Sellars MJ J Exp Biol; 2011 Aug; 214(Pt 16):2671-7. PubMed ID: 21795562 [TBL] [Abstract][Full Text] [Related]
12. Growth differentiation factor 11 locally controls anterior-posterior patterning of the axial skeleton. Suh J; Eom JH; Kim NK; Woo KM; Baek JH; Ryoo HM; Lee SJ; Lee YS J Cell Physiol; 2019 Dec; 234(12):23360-23368. PubMed ID: 31183862 [TBL] [Abstract][Full Text] [Related]
13. GDF11 Increases with Age and Inhibits Skeletal Muscle Regeneration. Egerman MA; Cadena SM; Gilbert JA; Meyer A; Nelson HN; Swalley SE; Mallozzi C; Jacobi C; Jennings LL; Clay I; Laurent G; Ma S; Brachat S; Lach-Trifilieff E; Shavlakadze T; Trendelenburg AU; Brack AS; Glass DJ Cell Metab; 2015 Jul; 22(1):164-74. PubMed ID: 26001423 [TBL] [Abstract][Full Text] [Related]
14. Functional replacement of myostatin with GDF-11 in the germline of mice. Lee SJ; Lehar A; Rydzik R; Youngstrom DW; Bhasin S; Liu Y; Germain-Lee EL Skelet Muscle; 2022 Mar; 12(1):7. PubMed ID: 35287700 [TBL] [Abstract][Full Text] [Related]
16. Pathophysiological levels of GDF11 activate Smad2/Smad3 signaling and induce muscle atrophy in human iPSC-derived myocytes. Honda M; Makino T; Zhao X; Matsuto M; Sakurai H; Takahashi Y; Shimizu M; Sato R; Yamauchi Y Am J Physiol Cell Physiol; 2022 Nov; 323(5):C1402-C1409. PubMed ID: 36094432 [TBL] [Abstract][Full Text] [Related]
17. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. McPherron AC; Lawler AM; Lee SJ Nat Genet; 1999 Jul; 22(3):260-4. PubMed ID: 10391213 [TBL] [Abstract][Full Text] [Related]
18. Structural basis for potency differences between GDF8 and GDF11. Walker RG; Czepnik M; Goebel EJ; McCoy JC; Vujic A; Cho M; Oh J; Aykul S; Walton KL; Schang G; Bernard DJ; Hinck AP; Harrison CA; Martinez-Hackert E; Wagers AJ; Lee RT; Thompson TB BMC Biol; 2017 Mar; 15(1):19. PubMed ID: 28257634 [TBL] [Abstract][Full Text] [Related]
19. Gdf11 is a negative regulator of chondrogenesis and myogenesis in the developing chick limb. Gamer LW; Cox KA; Small C; Rosen V Dev Biol; 2001 Jan; 229(2):407-20. PubMed ID: 11203700 [TBL] [Abstract][Full Text] [Related]
20. Proteomic identification and functional validation of activins and bone morphogenetic protein 11 as candidate novel muscle mass regulators. Souza TA; Chen X; Guo Y; Sava P; Zhang J; Hill JJ; Yaworsky PJ; Qiu Y Mol Endocrinol; 2008 Dec; 22(12):2689-702. PubMed ID: 18927237 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]