These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 32071489)

  • 21. Holographic waveguide heads-up display for longitudinal image magnification and pupil expansion.
    Bigler CM; Blanche PA; Sarma K
    Appl Opt; 2018 Mar; 57(9):2007-2013. PubMed ID: 29604038
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Waveguide-type Maxwellian near-eye display using a pin-mirror holographic optical element array.
    Choi MH; Shin KS; Jang J; Han W; Park JH
    Opt Lett; 2022 Jan; 47(2):405-408. PubMed ID: 35030617
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Projection-type see-through near-to-eye display with a passively enlarged eye-box by combining a holographic lens and diffuser.
    Yeom J; Hong J; Jeong J
    Opt Express; 2021 Oct; 29(22):36005-36020. PubMed ID: 34809022
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design of a compact waveguide eyeglass with high efficiency by joining freeform surfaces and volume holographic gratings.
    Shi X; Liu J; Xiao J; Han J
    J Opt Soc Am A Opt Image Sci Vis; 2021 Feb; 38(2):A19-A26. PubMed ID: 33690524
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Three-dimensional see-through augmented-reality display system using a holographic micromirror array.
    Darkhanbaatar N; Erdenebat MU; Shin CW; Kwon KC; Lee KY; Baasantseren G; Kim N
    Appl Opt; 2021 Sep; 60(25):7545-7551. PubMed ID: 34613220
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical eye tracking system for real-time noninvasive tumor localization in external beam radiotherapy.
    Via R; Fassi A; Fattori G; Fontana G; Pella A; Tagaste B; Riboldi M; Ciocca M; Orecchia R; Baroni G
    Med Phys; 2015 May; 42(5):2194-202. PubMed ID: 25979013
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the Imaging Characteristics of Holographic Waveguides Recorded in Photopolymers.
    Neipp C; Taleb SI; Francés J; Fernández R; Puerto D; Calzado EM; Gallego S; Beléndez A
    Polymers (Basel); 2020 Jul; 12(7):. PubMed ID: 32635228
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Theoretical efficiency limit of diffractive input couplers in augmented reality waveguides.
    Zhao Z; Lee YH; Feng X; Escuti MJ; Lu L; Silverstein B
    Opt Express; 2024 Mar; 32(7):12340-12357. PubMed ID: 38571059
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Holographically customized optical combiner for eye-box extended near-eye display.
    Jeong J; Lee J; Yoo C; Moon S; Lee B; Lee B
    Opt Express; 2019 Dec; 27(26):38006-38018. PubMed ID: 31878572
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of shrinkage in photopolymer film on the information transmitted through the holographic waveguide for near eye displays.
    Kaur R; Park JH; Kumar R
    J Opt Soc Am A Opt Image Sci Vis; 2024 Mar; 41(3):A15-A24. PubMed ID: 38437419
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Robust eye tracking based on multiple corneal reflections for clinical applications.
    Mestre C; Gautier J; Pujol J
    J Biomed Opt; 2018 Mar; 23(3):1-9. PubMed ID: 29500875
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Laterally tapered undercut active waveguide fabricated by simple wet etching method for vertical waveguide directional coupler.
    Lin FZ; Chiu YJ; Tsai SA; Wu TH
    Opt Express; 2008 May; 16(11):7588-94. PubMed ID: 18545465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a Magnetoresistive-Based Wearable Eye-Tracking System for Oculomotor Assessment in Neurological and Otoneurological Research-Preliminary In Vivo Tests.
    Donniacuo A; Viberti F; Carucci M; Biancalana V; Bellizzi L; Mandalà M
    Brain Sci; 2023 Oct; 13(10):. PubMed ID: 37891805
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Eye tracker accuracy: quantitative evaluation of the invisible eye center location.
    Wyder S; Cattin PC
    Int J Comput Assist Radiol Surg; 2018 Oct; 13(10):1651-1660. PubMed ID: 29916061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Examining aberrations due to depth of field in holographic pupil replication waveguide systems.
    Draper CT; Blanche PA
    Appl Opt; 2021 Feb; 60(6):1653-1659. PubMed ID: 33690502
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Waveguide-type see-through dual focus near-eye display with a polarization grating.
    Shin KS; Choi MH; Jang J; Park JH
    Opt Express; 2021 Nov; 29(24):40294-40309. PubMed ID: 34809374
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation of a video tracking device for measurement of horizontal and vertical eye rotations during locomotion.
    DiScenna AO; Das V; Zivotofsky AZ; Seidman SH; Leigh RJ
    J Neurosci Methods; 1995 May; 58(1-2):89-94. PubMed ID: 7475237
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Waveguide holography for 3D augmented reality glasses.
    Jang C; Bang K; Chae M; Lee B; Lanman D
    Nat Commun; 2024 Jan; 15(1):66. PubMed ID: 38169467
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Do You See What I See? The Effect of Gaze Tracking on Task Space Remote Collaboration.
    Gupta K; Lee GA; Billinghurst M
    IEEE Trans Vis Comput Graph; 2016 Nov; 22(11):2413-22. PubMed ID: 27479970
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Astigmatism and deformation correction for a holographic head-mounted display with a wedge-shaped holographic waveguide.
    Lin WK; Matoba O; Lin BS; Su WC
    Appl Opt; 2018 Sep; 57(25):7094-7101. PubMed ID: 30182970
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.