These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32072331)

  • 1. Stress Detection via Keyboard Typing Behaviors by Using Smartphone Sensors and Machine Learning Techniques.
    Sağbaş EA; Korukoglu S; Balli S
    J Med Syst; 2020 Feb; 44(4):68. PubMed ID: 32072331
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A single vs. multi-sensor approach to enhanced detection of smartphone placement.
    Guiry JJ; Karr CJ; van de Ven P; Nelson J; Begale M
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3691-4. PubMed ID: 25570792
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study.
    Sultana M; Al-Jefri M; Lee J
    JMIR Mhealth Uhealth; 2020 Sep; 8(9):e17818. PubMed ID: 32990638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning Estimation of COVID-19 Social Distance using Smartphone Sensor Data.
    Semenov O; Agu E; Pahlavan K
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4452-4457. PubMed ID: 34892208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Parkinson's disease detection from 20-step walking tests using inertial sensors of a smartphone: Machine learning approach based on an observational case-control study.
    Juutinen M; Wang C; Zhu J; Haladjian J; Ruokolainen J; Puustinen J; Vehkaoja A
    PLoS One; 2020; 15(7):e0236258. PubMed ID: 32701955
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atrial Fibrillation Detection via Accelerometer and Gyroscope of a Smartphone.
    Lahdenoja O; Hurnanen T; Iftikhar Z; Nieminen S; Knuutila T; Saraste A; Kiviniemi T; Vasankari T; Airaksinen J; Pankaala M; Koivisto T
    IEEE J Biomed Health Inform; 2018 Jan; 22(1):108-118. PubMed ID: 28391210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Feature Analysis of Smart Shoe Sensors for Classification of Gait Patterns.
    Sunarya U; Sun Hariyani Y; Cho T; Roh J; Hyeong J; Sohn I; Kim S; Park C
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33147794
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Smartphone-Based Human Sitting Behaviors Recognition Using Inertial Sensor.
    Sinha VK; Patro KK; Pławiak P; Prakash AJ
    Sensors (Basel); 2021 Oct; 21(19):. PubMed ID: 34640971
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Behavioral Modeling for Mental Health using Machine Learning Algorithms.
    Srividya M; Mohanavalli S; Bhalaji N
    J Med Syst; 2018 Apr; 42(5):88. PubMed ID: 29610979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Driver behavior profiling: An investigation with different smartphone sensors and machine learning.
    Ferreira J; Carvalho E; Ferreira BV; de Souza C; Suhara Y; Pentland A; Pessin G
    PLoS One; 2017; 12(4):e0174959. PubMed ID: 28394925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MagIO: Magnetic Field Strength Based Indoor- Outdoor Detection with a Commercial Smartphone.
    Ashraf I; Hur S; Park Y
    Micromachines (Basel); 2018 Oct; 9(10):. PubMed ID: 30424467
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced Classification of Dog Activities with Quaternion-Based Fusion Approach on High-Dimensional Raw Data from Wearable Sensors.
    Muminov A; Mukhiddinov M; Cho J
    Sensors (Basel); 2022 Dec; 22(23):. PubMed ID: 36502172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Navigating Virtual Environments Using Leg Poses and Smartphone Sensors.
    Tsaramirsis G; Buhari SM; Basheri M; Stojmenovic M
    Sensors (Basel); 2019 Jan; 19(2):. PubMed ID: 30642131
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impact of Sliding Window Length in Indoor Human Motion Modes and Pose Pattern Recognition Based on Smartphone Sensors.
    Wang G; Li Q; Wang L; Wang W; Wu M; Liu T
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29912174
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feature selection for elderly faller classification based on wearable sensors.
    Howcroft J; Kofman J; Lemaire ED
    J Neuroeng Rehabil; 2017 May; 14(1):47. PubMed ID: 28558724
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transportation Modes Classification Using Sensors on Smartphones.
    Fang SH; Liao HH; Fei YX; Chen KH; Huang JW; Lu YD; Tsao Y
    Sensors (Basel); 2016 Aug; 16(8):. PubMed ID: 27548182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feature selection for wearable smartphone-based human activity recognition with able bodied, elderly, and stroke patients.
    Capela NA; Lemaire ED; Baddour N
    PLoS One; 2015; 10(4):e0124414. PubMed ID: 25885272
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced Human Activity Recognition Based on Smartphone Sensor Data Using Hybrid Feature Selection Model.
    Ahmed N; Rafiq JI; Islam MR
    Sensors (Basel); 2020 Jan; 20(1):. PubMed ID: 31935943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Smartphone Motion Sensor-Based Complex Human Activity Identification Using Deep Stacked Autoencoder Algorithm for Enhanced Smart Healthcare System.
    Alo UR; Nweke HF; Teh YW; Murtaza G
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33167424
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Scalable Smartwatch-Based Medication Intake Detection System Using Distributed Machine Learning.
    Fozoonmayeh D; Le HV; Wittfoth E; Geng C; Ha N; Wang J; Vasilenko M; Ahn Y; Woodbridge DM
    J Med Syst; 2020 Feb; 44(4):76. PubMed ID: 32112271
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.