These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 32072331)

  • 41. Cross-validation and out-of-sample testing of physical activity intensity predictions with a wrist-worn accelerometer.
    Montoye AHK; Westgate BS; Fonley MR; Pfeiffer KA
    J Appl Physiol (1985); 2018 May; 124(5):1284-1293. PubMed ID: 29369742
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Implementation of a smartphone wireless accelerometer platform for establishing deep brain stimulation treatment efficacy of essential tremor with machine learning.
    LeMoyne R; Tomycz N; Mastroianni T; McCandless C; Cozza M; Peduto D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6772-5. PubMed ID: 26737848
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Continuous Stress Detection Using Wearable Sensors in Real Life: Algorithmic Programming Contest Case Study.
    Can YS; Chalabianloo N; Ekiz D; Ersoy C
    Sensors (Basel); 2019 Apr; 19(8):. PubMed ID: 31003456
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Accelerometer and Camera-Based Strategy for Improved Human Fall Detection.
    Zerrouki N; Harrou F; Sun Y; Houacine A
    J Med Syst; 2016 Dec; 40(12):284. PubMed ID: 27796842
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Methods for Real-Time Prediction of the Mode of Travel Using Smartphone-Based GPS and Accelerometer Data.
    Martin BD; Addona V; Wolfson J; Adomavicius G; Fan Y
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28885550
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The need to approximate the use-case in clinical machine learning.
    Saeb S; Lonini L; Jayaraman A; Mohr DC; Kording KP
    Gigascience; 2017 May; 6(5):1-9. PubMed ID: 28327985
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effectiveness of simple heuristic features in sensor orientation and placement problems in human activity recognition using a single smartphone accelerometer.
    Barua A; Jiang X; Fuller D
    Biomed Eng Online; 2024 Feb; 23(1):21. PubMed ID: 38368358
    [TBL] [Abstract][Full Text] [Related]  

  • 48. An Activity-Aware Sampling Scheme for Mobile Phones in Activity Recognition.
    Chen Z; Chen J; Huang X
    Sensors (Basel); 2020 Apr; 20(8):. PubMed ID: 32294935
    [TBL] [Abstract][Full Text] [Related]  

  • 49. SUPAR: Smartphone as a ubiquitous physical activity recognizer for u-healthcare services.
    Fahim M; Lee S; Yoon Y
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3666-9. PubMed ID: 25570786
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Using phone sensors and an artificial neural network to detect gait changes during drinking episodes in the natural environment.
    Suffoletto B; Gharani P; Chung T; Karimi H
    Gait Posture; 2018 Feb; 60():116-121. PubMed ID: 29179052
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Radiogenomics of lower-grade gliomas: machine learning-based MRI texture analysis for predicting 1p/19q codeletion status.
    Kocak B; Durmaz ES; Ates E; Sel I; Turgut Gunes S; Kaya OK; Zeynalova A; Kilickesmez O
    Eur Radiol; 2020 Feb; 30(2):877-886. PubMed ID: 31691122
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Emotional Stress State Detection Using Genetic Algorithm-Based Feature Selection on EEG Signals.
    Shon D; Im K; Park JH; Lim DS; Jang B; Kim JM
    Int J Environ Res Public Health; 2018 Nov; 15(11):. PubMed ID: 30400575
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fall-Risk Classification in Amputees Using Smartphone Sensor Based Features in Turns.
    Daines KJF; Baddour N; Burger H; Bavec A; Lemaire ED
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4175-4178. PubMed ID: 33018917
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Human Physical Activity Recognition Using Smartphone Sensors.
    Voicu RA; Dobre C; Bajenaru L; Ciobanu RI
    Sensors (Basel); 2019 Jan; 19(3):. PubMed ID: 30678039
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A Novel Approach to Clustering Accelerometer Data for Application in Passive Predictions of Changes in Depression Severity.
    Ross MK; Tulabandhula T; Bennett CC; Baek E; Kim D; Hussain F; Demos AP; Ning E; Langenecker SA; Ajilore O; Leow AD
    Sensors (Basel); 2023 Feb; 23(3):. PubMed ID: 36772625
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Supervised machine learning algorithms to diagnose stress for vehicle drivers based on physiological sensor signals.
    Barua S; Begum S; Ahmed MU
    Stud Health Technol Inform; 2015; 211():241-8. PubMed ID: 25980876
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Tonic-clonic seizure detection using accelerometry-based wearable sensors: A prospective, video-EEG controlled study.
    Johansson D; Ohlsson F; Krýsl D; Rydenhag B; Czarnecki M; Gustafsson N; Wipenmyr J; McKelvey T; Malmgren K
    Seizure; 2019 Feb; 65():48-54. PubMed ID: 30611010
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Recognition of Typical Locomotion Activities Based on the Sensor Data of a Smartphone in Pocket or Hand.
    Ebner M; Fetzer T; Bullmann M; Deinzer F; Grzegorzek M
    Sensors (Basel); 2020 Nov; 20(22):. PubMed ID: 33212894
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Sociodemographic characteristics of missing data in digital phenotyping.
    Kiang MV; Chen JT; Krieger N; Buckee CO; Alexander MJ; Baker JT; Buckner RL; Coombs G; Rich-Edwards JW; Carlson KW; Onnela JP
    Sci Rep; 2021 Jul; 11(1):15408. PubMed ID: 34326370
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Review of Emotion Recognition Methods Based on Data Acquired via Smartphone Sensors.
    Kołakowska A; Szwoch W; Szwoch M
    Sensors (Basel); 2020 Nov; 20(21):. PubMed ID: 33171646
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.