BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 32072680)

  • 1. The Hidden Dimension: Context-Dependent Expression of Repeatable Behavior in Copepods.
    Heuschele J; Lode T; Andersen T; Titelman J
    Environ Toxicol Chem; 2020 May; 39(5):1017-1026. PubMed ID: 32072680
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Density-Dependent Metabolic Costs of Copper Exposure in a Coastal Copepod.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Toxicol Chem; 2021 Sep; 40(9):2538-2546. PubMed ID: 34133786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of the Marine Calanoid Copepod Pseudodiaptomus pelagicus to Copper, Phenanthrene, and Ammonia.
    Kennedy AJ; Biber TW; May LR; Lotufo GR; Farrar JD; Bednar AJ
    Environ Toxicol Chem; 2019 Jun; 38(6):1221-1230. PubMed ID: 30790342
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrasting Effects of Predation Risk and Copper on Copepod Respiration Rates.
    Lode T; Heuschele J; Andersen T; Titelman J; Hylland K; Borgå K
    Environ Toxicol Chem; 2020 Sep; 39(9):1765-1773. PubMed ID: 32557750
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper.
    Sahlmann A; Lode T; Heuschele J; Borgå K; Titelman J; Hylland K
    Environ Toxicol Chem; 2019 Oct; 38(10):2224-2232. PubMed ID: 31343775
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Behavioral responses of the estuarine calanoid copepod Eurytemora affinis to sub-lethal concentrations of waterborne pollutants.
    Michalec FG; Holzner M; Menu D; Hwang JS; Souissi S
    Aquat Toxicol; 2013 Aug; 138-139():129-38. PubMed ID: 23735933
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lipid nanocapsules for behavioural testing in aquatic toxicology: Time-response of Eurytemora affinis to environmental concentrations of PAHs and PCB.
    Michalec FG; Holzner M; Souissi A; Stancheva S; Barras A; Boukherroub R; Souissi S
    Aquat Toxicol; 2016 Jan; 170():310-322. PubMed ID: 26362585
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acute and chronic toxicities of zinc pyrithione alone and in combination with copper to the marine copepod Tigriopus japonicus.
    Bao VW; Lui GC; Leung KM
    Aquat Toxicol; 2014 Dec; 157():81-93. PubMed ID: 25456222
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predator-prey interactions in a changing world: humic stress disrupts predator threat evasion in copepods.
    Santonja M; Minguez L; Gessner MO; Sperfeld E
    Oecologia; 2017 Mar; 183(3):887-898. PubMed ID: 28035473
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alleviation of mercury toxicity to a marine copepod under multigenerational exposure by ocean acidification.
    Li Y; Wang WX; Wang M
    Sci Rep; 2017 Mar; 7(1):324. PubMed ID: 28336926
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Infodisruptions in predator-prey interactions: xenobiotics alter microcrustaceans responses to fish infochemicals.
    Gutierrez MF; Paggi JC; Gagneten AM
    Ecotoxicol Environ Saf; 2012 Jul; 81():11-6. PubMed ID: 22551684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Behavioral effects of copper on larval white sturgeon.
    Puglis HJ; Calfee RD; Little EE
    Environ Toxicol Chem; 2019 Jan; 38(1):132-144. PubMed ID: 30298941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comprehensive characterization of the acute and chronic toxicity of the neonicotinoid insecticide thiamethoxam to a suite of aquatic primary producers, invertebrates, and fish.
    Finnegan MC; Baxter LR; Maul JD; Hanson ML; Hoekstra PF
    Environ Toxicol Chem; 2017 Oct; 36(10):2838-2848. PubMed ID: 28493485
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased sensitivity of subantarctic marine invertebrates to copper under a changing climate - Effects of salinity and temperature.
    Holan JR; King CK; Proctor AH; Davis AR
    Environ Pollut; 2019 Jun; 249():54-62. PubMed ID: 30878862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective and context-dependent effects of chemical stress across trophic levels at the basis of marine food webs.
    Mensens C; De Laender F; Janssen CR; Rivera FC; Sabbe K; De Troch M
    Ecol Appl; 2018 Jul; 28(5):1342-1353. PubMed ID: 29698586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene expression patterns and stress response in marine copepods.
    Lauritano C; Procaccini G; Ianora A
    Mar Environ Res; 2012 May; 76():22-31. PubMed ID: 22030210
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aquatic exposures of chemical mixtures in urban environments: Approaches to impact assessment.
    de Zwart D; Adams W; Galay Burgos M; Hollender J; Junghans M; Merrington G; Muir D; Parkerton T; De Schamphelaere KAC; Whale G; Williams R
    Environ Toxicol Chem; 2018 Mar; 37(3):703-714. PubMed ID: 28861906
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of copper on olfactory, behavioral, and other sublethal responses of saltwater organisms: Are estimated chronic limits using the biotic ligand model protective?
    DeForest DK; Gensemer RW; Gorsuch JW; Meyer JS; Santore RC; Shephard BK; Zodrow JM
    Environ Toxicol Chem; 2018 Jun; 37(6):1515-1522. PubMed ID: 29442368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Parasites and Pollutants: Effects of Multiple Stressors on Aquatic Organisms.
    Grabner D; Rothe LE; Sures B
    Environ Toxicol Chem; 2023 Sep; 42(9):1946-1959. PubMed ID: 37283208
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Potential of the small cyclopoid copepod Paracyclopina nana as an invertebrate model for ecotoxicity testing.
    Dahms HU; Won EJ; Kim HS; Han J; Park HG; Souissi S; Raisuddin S; Lee JS
    Aquat Toxicol; 2016 Nov; 180():282-294. PubMed ID: 27770640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.