BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 32072869)

  • 1. Statistical optimization of arsenic removal from synthetic water by electrocoagulation system and its application with real arsenic-polluted groundwater.
    Mendoza-Chávez CE; Carabin A; Dirany A; Drogui P; Buelna G; Meza-Montenegro MM; Ulloa-Mercado RG; Diaz-Tenorio LM; Leyva-Soto LA; Gortáres-Moroyoqui P
    Environ Technol; 2021 Sep; 42(22):3463-3474. PubMed ID: 32072869
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous arsenic and fluoride removal from synthetic and real groundwater by electrocoagulation process: Parametric and cost evaluation.
    Thakur LS; Mondal P
    J Environ Manage; 2017 Apr; 190():102-112. PubMed ID: 28040586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term electrode behavior during treatment of arsenic contaminated groundwater by a pilot-scale iron electrocoagulation system.
    Bandaru SRS; Roy A; Gadgil AJ; van Genuchten CM
    Water Res; 2020 May; 175():115668. PubMed ID: 32163769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Arsenic removal from groundwater using an aerated electrocoagulation reactor with 3D Al electrodes in the presence of anions.
    Goren AY; Kobya M
    Chemosphere; 2021 Jan; 263():128253. PubMed ID: 33297198
    [TBL] [Abstract][Full Text] [Related]  

  • 5. How does arsenic speciation (arsenite and arsenate) in groundwater affect the performance of an aerated electrocoagulation reactor and human health risk?
    Goren AY; Kobya M; Khataee A
    Sci Total Environ; 2022 Feb; 808():152135. PubMed ID: 34864021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Arsenite removal from groundwater by aerated electrocoagulation reactor with Al ball electrodes: Human health risk assessment.
    Goren AY; Kobya M; Oncel MS
    Chemosphere; 2020 Jul; 251():126363. PubMed ID: 32151809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor.
    Mohora E; Rončević S; Dalmacija B; Agbaba J; Watson M; Karlović E; Dalmacija M
    J Hazard Mater; 2012 Oct; 235-236():257-64. PubMed ID: 22902131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of sono-electrocoagulation in arsenic removal from aqueous solutions and the related human health risk assessment.
    Sadeghi H; Mohammadpour A; Samaei MR; Azhdarpoor A; Hadipoor M; Mehrazmay H; Mousavi Khaneghah A
    Environ Res; 2022 Sep; 212(Pt A):113147. PubMed ID: 35341750
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater.
    Roy M; van Genuchten CM; Rietveld L; van Halem D
    Water Res; 2021 Jan; 188():116531. PubMed ID: 33126004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Abatement of hydrated silica, arsenic, and coexisting ions from groundwater by electrocoagulation using iron electrodes.
    Valentín-Reyes J; Trejo DB; Coreño O; Nava JL
    Chemosphere; 2022 Jun; 297():134144. PubMed ID: 35227747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide.
    Bandaru SRS; van Genuchten CM; Kumar A; Glade S; Hernandez D; Nahata M; Gadgil A
    Environ Sci Technol; 2020 May; 54(10):6094-6103. PubMed ID: 32315523
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Life cycle assessment (LCA) of the arsenic and fluoride removal from groundwater through adsorption and electrocoagulation: A comparative study.
    Goyal H; Mondal P
    Chemosphere; 2022 Oct; 304():135243. PubMed ID: 35679977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Arsenic removal from groundwater using iron electrocoagulation: effect of charge dosage rate.
    Amrose S; Gadgil A; Srinivasan V; Kowolik K; Muller M; Huang J; Kostecki R
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1019-30. PubMed ID: 23573922
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Field demonstration of solar-powered electrocoagulation water treatment system for purifying groundwater contaminated by both total coliforms and arsenic.
    Oh C; Pak S; Han YS; Ha NTH; Hong M; Ji S
    Environ Technol; 2021 Jan; 42(3):397-409. PubMed ID: 31179862
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluoride removal from natural volcanic underground water by an electrocoagulation process: Parametric and cost evaluations.
    Mena VF; Betancor-Abreu A; González S; Delgado S; Souto RM; Santana JJ
    J Environ Manage; 2019 Sep; 246():472-483. PubMed ID: 31200181
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How do operating conditions affect As(III) removal by iron electrocoagulation?
    Delaire C; Amrose S; Zhang M; Hake J; Gadgil A
    Water Res; 2017 Apr; 112():185-194. PubMed ID: 28160698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic removal by discontinuous ZVI two steps system for drinking water production at household scale.
    Casentini B; Falcione FT; Amalfitano S; Fazi S; Rossetti S
    Water Res; 2016 Dec; 106():135-145. PubMed ID: 27710797
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Concurrent removal of nitrate, arsenic and iron from simulated and real-life groundwater to meet drinking water standards: Effects of operational and environmental parameters.
    Shakya AK; Ghosh PK
    J Environ Manage; 2019 Apr; 235():9-18. PubMed ID: 30669094
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrocoagulation for Arsenic Removal: Field Trials in Rural West Bengal.
    Dutta N; Haldar A; Gupta A
    Arch Environ Contam Toxicol; 2021 Jan; 80(1):248-258. PubMed ID: 33398394
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimization of Coagulation-Flocculation Process in Efficient Arsenic Removal from Highly Contaminated Groundwater by Response Surface Methodology.
    Amiri S; Vatanpour V; He T
    Molecules; 2022 Nov; 27(22):. PubMed ID: 36432053
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.