These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 32072906)

  • 1. Positive Predictive Value Surfaces as a Complementary Tool to Assess the Performance of Virtual Screening Methods.
    Morales JF; Chuguransky S; Alberca LN; Alice JI; Goicoechea S; Ruiz ME; Bellera CL; Talevi A
    Mini Rev Med Chem; 2020; 20(14):1447-1460. PubMed ID: 32072906
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ensemble learning application to discover new trypanothione synthetase inhibitors.
    Alice JI; Bellera CL; Benítez D; Comini MA; Duchowicz PR; Talevi A
    Mol Divers; 2021 Aug; 25(3):1361-1373. PubMed ID: 34264440
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of QSAR Equations for Virtual Screening.
    Spiegel J; Senderowitz H
    Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Systematic Comparison of the Performance of Different 2D and 3D Ligand-Based Virtual Screening Methodologies to Discover Anticonvulsant Drugs.
    Di Ianni ME; Gantner ME; Ruiz ME; Castro EA; Bruno-Blanch LE; Talevi A
    Comb Chem High Throughput Screen; 2015; 18(4):387-98. PubMed ID: 25747440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Can machine learning algorithms accurately predict discharge to nonhome facility and early unplanned readmissions following spinal fusion? Analysis of a national surgical registry.
    Goyal A; Ngufor C; Kerezoudis P; McCutcheon B; Storlie C; Bydon M
    J Neurosurg Spine; 2019 Oct; 31(4):568-578. PubMed ID: 31174185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated machine learning, molecular docking and 3D-QSAR based approach for identification of potential inhibitors of trypanosomal N-myristoyltransferase.
    Singh N; Shah P; Dwivedi H; Mishra S; Tripathi R; Sahasrabuddhe AA; Siddiqi MI
    Mol Biosyst; 2016 Nov; 12(12):3711-3723. PubMed ID: 27766319
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative structure-activity relationship models for compounds with anticonvulsant activity.
    Bellera CL; Talevi A
    Expert Opin Drug Discov; 2019 Jul; 14(7):653-665. PubMed ID: 31072145
    [No Abstract]   [Full Text] [Related]  

  • 8. Machine learning applications for the prediction of surgical site infection in neurological operations.
    Tunthanathip T; Sae-Heng S; Oearsakul T; Sakarunchai I; Kaewborisutsakul A; Taweesomboonyat C
    Neurosurg Focus; 2019 Aug; 47(2):E7. PubMed ID: 31370028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ALADDIN: Docking Approach Augmented by Machine Learning for Protein Structure Selection Yields Superior Virtual Screening Performance.
    Fan N; Bauer CA; Stork C; de Bruyn Kops C; Kirchmair J
    Mol Inform; 2020 Apr; 39(4):e1900103. PubMed ID: 31663691
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Validating the validation: reanalyzing a large-scale comparison of deep learning and machine learning models for bioactivity prediction.
    Robinson MC; Glen RC; Lee AA
    J Comput Aided Mol Des; 2020 Jul; 34(7):717-730. PubMed ID: 31960253
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Applications of Quantitative Structure-Activity Relationships (QSAR) based Virtual Screening in Drug Design: A Review.
    Achary PGR
    Mini Rev Med Chem; 2020; 20(14):1375-1388. PubMed ID: 32348219
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of Predictive QSAR Models of 4-Thiazolidinones Antitrypanosomal Activity Using Modern Machine Learning Algorithms.
    Kryshchyshyn A; Devinyak O; Kaminskyy D; Grellier P; Lesyk R
    Mol Inform; 2018 May; 37(5):e1700078. PubMed ID: 29134756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revisiting performance metrics for prediction with rare outcomes.
    Adhikari S; Normand SL; Bloom J; Shahian D; Rose S
    Stat Methods Med Res; 2021 Oct; 30(10):2352-2366. PubMed ID: 34468239
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A combined strategy of feature selection and machine learning to identify predictors of prediabetes.
    De Silva K; Jönsson D; Demmer RT
    J Am Med Inform Assoc; 2020 Mar; 27(3):396-406. PubMed ID: 31889178
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying de-NEDDylation inhibitors: Virtual high-throughput screens targeting SENP8.
    Chen JJ; Schmucker LN; Visco DP
    Chem Biol Drug Des; 2019 Apr; 93(4):590-604. PubMed ID: 30560590
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning classification can reduce false positives in structure-based virtual screening.
    Adeshina YO; Deeds EJ; Karanicolas J
    Proc Natl Acad Sci U S A; 2020 Aug; 117(31):18477-18488. PubMed ID: 32669436
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Benchmarking ligand-based virtual High-Throughput Screening with the PubChem database.
    Butkiewicz M; Lowe EW; Mueller R; Mendenhall JL; Teixeira PL; Weaver CD; Meiler J
    Molecules; 2013 Jan; 18(1):735-56. PubMed ID: 23299552
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Predictiveness curves in virtual screening.
    Empereur-Mot C; Guillemain H; Latouche A; Zagury JF; Viallon V; Montes M
    J Cheminform; 2015; 7():52. PubMed ID: 26539250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An ensemble model of QSAR tools for regulatory risk assessment.
    Pradeep P; Povinelli RJ; White S; Merrill SJ
    J Cheminform; 2016; 8():48. PubMed ID: 28316646
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study.
    Sahu M; Siddiqui N; Sharma V; Wakode S
    Bioorg Chem; 2018 Apr; 77():56-67. PubMed ID: 29331765
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.