These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 32072944)

  • 1. Economical and environmental impacts of decarbonisation of Indonesian power sector.
    Indra Al Irsyad M; Halog A; Nepal R; Koesrindartoto DP
    J Environ Manage; 2020 Apr; 259():109669. PubMed ID: 32072944
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electricity generation: options for reduction in carbon emissions.
    Whittington HW
    Philos Trans A Math Phys Eng Sci; 2002 Aug; 360(1797):1653-68. PubMed ID: 12460490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of the most likely low-emission electricity production systems in Estonia.
    Baird ZS; Neshumayev D; Järvik O; Powell KM
    PLoS One; 2021; 16(12):e0261780. PubMed ID: 34968401
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Techno-economic feasibility study of solar photovoltaic power plant using RETScreen to achieve Indonesia energy transition.
    Paradongan HT; Hakam DF; Wiryono SK; Prahastono I; Aditya IA; Banjarnahor KM; Sinisuka NI; Asekomeh A
    Heliyon; 2024 Apr; 10(7):e27680. PubMed ID: 38586405
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Least-cost targets and avoided fossil fuel capacity in India's pursuit of renewable energy.
    Deshmukh R; Phadke A; Callaway DS
    Proc Natl Acad Sci U S A; 2021 Mar; 118(13):. PubMed ID: 33753476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Greenhouse gases emission reduction for electric power generation sector by efficient dispatching of thermal plants integrated with renewable systems.
    Ahmed I; Rehan M; Basit A; Hong KS
    Sci Rep; 2022 Jul; 12(1):12380. PubMed ID: 35858895
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A case study of Australia's emissions reduction policies - An electricity planner's perspective.
    Byrom S; Bongers GD; Dargusch P; Garnett A; Boston A
    J Environ Manage; 2020 Dec; 276():111323. PubMed ID: 32932067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Switch: a planning tool for power systems with large shares of intermittent renewable energy.
    Fripp M
    Environ Sci Technol; 2012 Jun; 46(11):6371-8. PubMed ID: 22506835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Incorporating land-use requirements and environmental constraints in low-carbon electricity planning for California.
    Wu GC; Torn MS; Williams JH
    Environ Sci Technol; 2015 Feb; 49(4):2013-21. PubMed ID: 25541644
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydro, wind and solar power as a base for a 100% renewable energy supply for South and Central America.
    Barbosa LS; Bogdanov D; Vainikka P; Breyer C
    PLoS One; 2017; 12(3):e0173820. PubMed ID: 28329023
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A sustainable solution for electricity crisis in Pakistan: opportunities, barriers, and policy implications for 100% renewable energy.
    Shah SAA; Solangi YA
    Environ Sci Pollut Res Int; 2019 Oct; 26(29):29687-29703. PubMed ID: 31407263
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development and bottlenecks of renewable electricity generation in China: a critical review.
    Hu Y; Cheng H
    Environ Sci Technol; 2013 Apr; 47(7):3044-56. PubMed ID: 23445126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Open Source Energy System Modeling Using Break-Even Costs to Inform State-Level Policy: A North Carolina Case Study.
    Li B; Thomas J; de Queiroz AR; DeCarolis JF
    Environ Sci Technol; 2020 Jan; 54(2):665-676. PubMed ID: 31834995
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marginal Emission Factors Considering Renewables: A Case Study of the U.S. Midcontinent Independent System Operator (MISO) System.
    Li M; Smith TM; Yang Y; Wilson EJ
    Environ Sci Technol; 2017 Oct; 51(19):11215-11223. PubMed ID: 28863474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating an economic application of renewable generated hydrogen: A way forward for green economic performance and policy measures.
    Wu B; Zhai B; Mu H; Peng X; Wang C; Patwary AK
    Environ Sci Pollut Res Int; 2022 Feb; 29(10):15144-15158. PubMed ID: 34628612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Have wind turbines in Germany generated electricity as would be expected from the prevailing wind conditions in 2000-2014?
    Germer S; Kleidon A
    PLoS One; 2019; 14(2):e0211028. PubMed ID: 30726244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Techno-economic analysis of rooftop solar power plant implementation and policy on mosques: an Indonesian case study.
    Suparwoko ; Qamar FA
    Sci Rep; 2022 Mar; 12(1):4823. PubMed ID: 35314762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is There a Future for Nuclear Power? Wind and Emission Reduction Targets in Fossil-Fuel Alberta.
    van Kooten GC; Duan J; Lynch R
    PLoS One; 2016; 11(11):e0165822. PubMed ID: 27902712
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of cost efficiencies of nuclear power and renewable energy generation in mitigating CO
    Kim HS
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):789-795. PubMed ID: 32820449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparing the impacts of fossil and renewable energy investments in Indonesia: A simple general equilibrium analysis.
    Hartono D; Hastuti SH; Halimatussadiah A; Saraswati A; Mita AF; Indriani V
    Heliyon; 2020 Jun; 6(6):e04120. PubMed ID: 32529081
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.