These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
132 related articles for article (PubMed ID: 32073818)
1. Sublimation-Induced Gas-Reacting Process for High-Energy-Density Ni-Rich Electrode Materials. Kim J; Lee J; Bae C; Kang B ACS Appl Mater Interfaces; 2020 Mar; 12(10):11745-11752. PubMed ID: 32073818 [TBL] [Abstract][Full Text] [Related]
2. Controllable Solid Electrolyte Interphase in Nickel-Rich Cathodes by an Electrochemical Rearrangement for Stable Lithium-Ion Batteries. Kim J; Lee J; Ma H; Jeong HY; Cha H; Lee H; Yoo Y; Park M; Cho J Adv Mater; 2018 Feb; 30(5):. PubMed ID: 29226554 [TBL] [Abstract][Full Text] [Related]
3. Role of Mn content on the electrochemical properties of nickel-rich layered LiNi(0.8-x)Co(0.1)Mn(0.1+x)O₂ (0.0 ≤ x ≤ 0.08) cathodes for lithium-ion batteries. Zheng J; Kan WH; Manthiram A ACS Appl Mater Interfaces; 2015 Apr; 7(12):6926-34. PubMed ID: 25756196 [TBL] [Abstract][Full Text] [Related]
4. Use of Ce to Reinforce the Interface of Ni-Rich LiNi Wu F; Li Q; Chen L; Lu Y; Su Y; Bao L; Chen R; Chen S ChemSusChem; 2019 Feb; 12(4):935-943. PubMed ID: 30480875 [TBL] [Abstract][Full Text] [Related]
5. The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li₀.₂Fe₀.₁Ni₀.₁₅Mn₀.₅₅]O₂ for lithium-ion batteries. Zhao T; Chen S; Chen R; Li L; Zhang X; Xie M; Wu F ACS Appl Mater Interfaces; 2014 Dec; 6(23):21711-20. PubMed ID: 25402183 [TBL] [Abstract][Full Text] [Related]
6. Mass-Scalable Molecular Monolayer for Ni-Rich Cathode Powder: Solution for Microcrack Failure in Lithium-Ion Batteries. Jeong S; Park JH; Park SY; Kim J; Lee KT; Park YD; Mun J ACS Appl Mater Interfaces; 2021 May; 13(19):22475-22484. PubMed ID: 33945251 [TBL] [Abstract][Full Text] [Related]
7. Facile Mn Surface Doping of Ni-Rich Layered Cathode Materials for Lithium Ion Batteries. Cho W; Lim YJ; Lee SM; Kim JH; Song JH; Yu JS; Kim YJ; Park MS ACS Appl Mater Interfaces; 2018 Nov; 10(45):38915-38921. PubMed ID: 30335357 [TBL] [Abstract][Full Text] [Related]
8. Mitigating Voltage Decay of Li-Rich Cathode Material via Increasing Ni Content for Lithium-Ion Batteries. Shi JL; Zhang JN; He M; Zhang XD; Yin YX; Li H; Guo YG; Gu L; Wan LJ ACS Appl Mater Interfaces; 2016 Aug; 8(31):20138-46. PubMed ID: 27437556 [TBL] [Abstract][Full Text] [Related]
9. Advancements and Challenges in High-Capacity Ni-Rich Cathode Materials for Lithium-Ion Batteries. Ahangari M; Szalai B; Lujan J; Zhou M; Luo H Materials (Basel); 2024 Feb; 17(4):. PubMed ID: 38399052 [TBL] [Abstract][Full Text] [Related]
10. Tailoring of Gradient Particles of Li-Rich Layered Cathodes with Mitigated Voltage Decay for Lithium-Ion Batteries. Ju X; Hou X; Beuse T; Liu Z; Du L; Brinkmann JP; Paillard E; Wang T; Winter M; Li J ACS Appl Mater Interfaces; 2020 Sep; 12(39):43596-43604. PubMed ID: 32840344 [TBL] [Abstract][Full Text] [Related]
11. Stabilizing the Electrode/Electrolyte Interface of LiNi Hou P; Zhang H; Deng X; Xu X; Zhang L ACS Appl Mater Interfaces; 2017 Sep; 9(35):29643-29653. PubMed ID: 28782929 [TBL] [Abstract][Full Text] [Related]
12. Interfacial Regulation of Ni-Rich Cathode Materials with an Ion-Conductive and Pillaring Layer by Infusing Gradient Boron for Improved Cycle Stability. Yang W; Xiang W; Chen YX; Wu ZG; Hua WB; Qiu L; He FR; Zhang J; Zhong BH; Guo XD ACS Appl Mater Interfaces; 2020 Mar; 12(9):10240-10251. PubMed ID: 32027108 [TBL] [Abstract][Full Text] [Related]
13. Controlling Ni Yeh NH; Wang FM; Khotimah C; Wang XC; Lin YW; Chang SC; Hsu CC; Chang YJ; Tiong L; Liu CH; Lu YR; Liao YF; Chang CK; Haw SC; Pao CW; Chen JL; Chen CL; Lee JF; Chan TS; Sheu HS; Chen JM; Ramar A; Su CH ACS Appl Mater Interfaces; 2021 Feb; 13(6):7355-7369. PubMed ID: 33534550 [TBL] [Abstract][Full Text] [Related]
14. Highly Stabilized Ni-Rich Cathode Material with Mo Induced Epitaxially Grown Nanostructured Hybrid Surface for High-Performance Lithium-Ion Batteries. Xu C; Xiang W; Wu Z; Xu Y; Li Y; Wang Y; Xiao Y; Guo X; Zhong B ACS Appl Mater Interfaces; 2019 May; 11(18):16629-16638. PubMed ID: 31002220 [TBL] [Abstract][Full Text] [Related]
15. The Li-ion rechargeable battery: a perspective. Goodenough JB; Park KS J Am Chem Soc; 2013 Jan; 135(4):1167-76. PubMed ID: 23294028 [TBL] [Abstract][Full Text] [Related]
16. Structure and Charge Regulation Strategy Enabling Superior Cyclability for Ni-Rich Layered Cathode Materials. Huang W; Li W; Wang L; Zhu H; Gao M; Zhao H; Zhao J; Shen X; Wang X; Wang Z; Qi C; Xiao W; Yao L; Wang J; Zhuang W; Sun X Small; 2021 Dec; 17(52):e2104282. PubMed ID: 34623019 [TBL] [Abstract][Full Text] [Related]
17. Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control. Zheng J; Ye Y; Liu T; Xiao Y; Wang C; Wang F; Pan F Acc Chem Res; 2019 Aug; 52(8):2201-2209. PubMed ID: 31180201 [TBL] [Abstract][Full Text] [Related]
18. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance. Fu C; Li G; Luo D; Li Q; Fan J; Li L ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668 [TBL] [Abstract][Full Text] [Related]
19. Mitigating the Microcracks of High-Ni Oxides by Sun YY; Hou PY; Zhang LC ACS Appl Mater Interfaces; 2020 Mar; 12(12):13923-13930. PubMed ID: 32150372 [TBL] [Abstract][Full Text] [Related]
20. Systematic Optimization of Battery Materials: Key Parameter Optimization for the Scalable Synthesis of Uniform, High-Energy, and High Stability LiNi Ren D; Shen Y; Yang Y; Shen L; Levin BDA; Yu Y; Muller DA; Abruña HD ACS Appl Mater Interfaces; 2017 Oct; 9(41):35811-35819. PubMed ID: 28938066 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]