These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Crystallization of metastable monoclinic carnallite, KCl·MgCl Pannach M; Paschke I; Schmidt H; Freyer D; Voigt W Acta Crystallogr C Struct Chem; 2020 May; 76(Pt 5):507-512. PubMed ID: 32367833 [TBL] [Abstract][Full Text] [Related]
3. Purification strategy and effect of impurities on corrosivity of dehydrated carnallite for thermal solar applications. Zhao Y; Klammer N; Vidal J RSC Adv; 2019 Dec; 9(71):41664-41671. PubMed ID: 35541596 [TBL] [Abstract][Full Text] [Related]
4. Enabling chloride salts for thermal energy storage: implications of salt purity. Kurley JM; Halstenberg PW; McAlister A; Raiman S; Dai S; Mayes RT RSC Adv; 2019 Aug; 9(44):25602-25608. PubMed ID: 35530081 [TBL] [Abstract][Full Text] [Related]
5. The Effect of In Situ Synthesis of MgO Nanoparticles on the Thermal Properties of Ternary Nitrate. Tong Z; Li L; Li Y; Wang Q; Cheng X Materials (Basel); 2021 Oct; 14(19):. PubMed ID: 34640134 [TBL] [Abstract][Full Text] [Related]
6. Revealing 3D Morphological and Chemical Evolution Mechanisms of Metals in Molten Salt by Multimodal Microscopy. Ronne A; He L; Dolzhnikov D; Xie Y; Ge M; Halstenberg P; Wang Y; Manard BT; Xiao X; Lee WK; Sasaki K; Dai S; Mahurin SM; Chen-Wiegart YK ACS Appl Mater Interfaces; 2020 Apr; 12(15):17321-17333. PubMed ID: 32212721 [TBL] [Abstract][Full Text] [Related]
7. The role of Mg value and moisture content of decomposed products during the decomposition process of carnallite in aqueous solution: a novel monitoring method. Cheng H; Hai Q; Song J; Ma X; Li C RSC Adv; 2020 May; 10(35):20529-20535. PubMed ID: 35517759 [TBL] [Abstract][Full Text] [Related]
8. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl₂ hydrates and MgCl₂ hydrates for seasonal heat storage. Pathak AD; Nedea S; Zondag H; Rindt C; Smeulders D Phys Chem Chem Phys; 2016 Apr; 18(15):10059-69. PubMed ID: 27004734 [TBL] [Abstract][Full Text] [Related]
9. Development of Deep Potentials of Molten MgCl Xu T; Li X; Wang Y; Tang Z ACS Appl Mater Interfaces; 2023 Mar; ():. PubMed ID: 36881968 [TBL] [Abstract][Full Text] [Related]
10. Temperature-Dependent Morphological Evolution during Corrosion of the Ni-20Cr Alloy in Molten Salt Revealed by Multiscale Imaging. Liu X; Bawane K; Zheng X; Ge M; Halstenberg P; Maltsev DS; Ivanov AS; Dai S; Xiao X; Lee WK; He L; Chen-Wiegart YK ACS Appl Mater Interfaces; 2023 Mar; 15(10):13772-13782. PubMed ID: 36877214 [TBL] [Abstract][Full Text] [Related]
11. Direct oxygen removal technique for recycling titanium using molten MgCl2 salt. Okabe TH; Hamanaka Y; Taninouchi YK Faraday Discuss; 2016 Aug; 190():109-26. PubMed ID: 27244243 [TBL] [Abstract][Full Text] [Related]
12. Development of NaCl-MgCl Dong W; Tian H; Zhang W; Zhou JJ; Pang X ACS Appl Mater Interfaces; 2024 Jan; 16(1):530-539. PubMed ID: 38126774 [TBL] [Abstract][Full Text] [Related]
13. Performance Investigation of High Temperature Application of Molten Solar Salt Nanofluid in a Direct Absorption Solar Collector. Karim MA; Arthur O; Yarlagadda PK; Islam M; Mahiuddin M Molecules; 2019 Jan; 24(2):. PubMed ID: 30646577 [TBL] [Abstract][Full Text] [Related]
14. Morpholine-Based Gemini Surfactant: Synthesis and Its Application for Reverse Froth Flotation of Carnallite Ore in Potassium Fertilizer Production. Huang Z; Cheng C; Li L; Guo Z; He G; Yu X; Liu R; Han H; Deng L; Fu W J Agric Food Chem; 2018 Dec; 66(50):13126-13132. PubMed ID: 30485094 [TBL] [Abstract][Full Text] [Related]
15. First-Principles Study of Chemical Mixtures of CaCl Pathak AD; Tranca I; Nedea SV; Zondag HA; Rindt CCM; Smeulders DMJ J Phys Chem C Nanomater Interfaces; 2017 Sep; 121(38):20576-20590. PubMed ID: 28983386 [TBL] [Abstract][Full Text] [Related]
16. Stabilization of molten salt materials using metal chlorides for solar thermal storage. Dunlop TO; Jarvis DJ; Voice WE; Sullivan JH Sci Rep; 2018 May; 8(1):8190. PubMed ID: 29844342 [TBL] [Abstract][Full Text] [Related]
17. In Situ Production of Copper Oxide Nanoparticles in a Binary Molten Salt for Concentrated Solar Power Plant Applications. Lasfargues M; Stead G; Amjad M; Ding Y; Wen D Materials (Basel); 2017 May; 10(5):. PubMed ID: 28772910 [TBL] [Abstract][Full Text] [Related]
18. Structures of three dehydration products of bischofite from in situ synchrotron powder diffraction data (MgCl2.nH2O; n = 1, 2, 4). Sugimoto K; Dinnebier RE; Hanson JC Acta Crystallogr B; 2007 Apr; 63(Pt 2):235-42. PubMed ID: 17374933 [TBL] [Abstract][Full Text] [Related]
19. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications. Lasfargues M; Bell A; Ding Y J Nanopart Res; 2016; 18():150. PubMed ID: 27358585 [TBL] [Abstract][Full Text] [Related]
20. Interplay between structure and transport properties of molten salt mixtures of ZnCl2-NaCl-KCl: A molecular dynamics study. Manga VR; Swinteck N; Bringuier S; Lucas P; Deymier P; Muralidharan K J Chem Phys; 2016 Mar; 144(9):094501. PubMed ID: 26957165 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]