These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 32073841)

  • 41. Optoelectronic Properties in Near-Infrared Colloidal Heterostructured Pyramidal "Giant" Core/Shell Quantum Dots.
    Tong X; Kong XT; Wang C; Zhou Y; Navarro-Pardo F; Barba D; Ma D; Sun S; Govorov AO; Zhao H; Wang ZM; Rosei F
    Adv Sci (Weinh); 2018 Aug; 5(8):1800656. PubMed ID: 30128262
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Optical characterization of In-flushed InAs/GaAs quantum dots emitting a broadband spectrum with multiple peaks at ~1 μm.
    Kitamura S; Senshu M; Katsuyama T; Hino Y; Ozaki N; Ohkouchi S; Sugimoto Y; Hogg RA
    Nanoscale Res Lett; 2015; 10():231. PubMed ID: 26034422
    [TBL] [Abstract][Full Text] [Related]  

  • 43. CdSe and CdSe/CdS core-shell QDs: New approach for synthesis, investigating optical properties and application in pollutant degradation.
    Abbasi S; Molaei M; Karimipour M
    Luminescence; 2017 Nov; 32(7):1137-1144. PubMed ID: 28378916
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Controlling surface defects of non-stoichiometric copper-indium-sulfide quantum dots.
    Park JC; Nam YS
    J Colloid Interface Sci; 2015 Dec; 460():173-80. PubMed ID: 26319334
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Achieving deep-red-to-near-infrared emissions in Sn-doped Cu-In-S/ZnS quantum dots for red-enhanced white LEDs and near-infrared LEDs.
    Chen J; Li Y; Wang L; Zhou T; Xie RJ
    Nanoscale; 2018 May; 10(20):9788-9795. PubMed ID: 29767202
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Highly Luminescent Water-Dispersible NIR-Emitting Wurtzite CuInS
    Xia C; Meeldijk JD; Gerritsen HC; de Mello Donega C
    Chem Mater; 2017 Jun; 29(11):4940-4951. PubMed ID: 28638177
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Long-Wavelength Lead Sulfide Quantum Dots Sensing up to 2600 nm for Short-Wavelength Infrared Photodetectors.
    Dong C; Liu S; Barange N; Lee J; Pardue T; Yi X; Yin S; So F
    ACS Appl Mater Interfaces; 2019 Nov; 11(47):44451-44457. PubMed ID: 31689078
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Near-Infrared Light-Emitting Diodes Based on RoHS-Compliant InAs/ZnSe Colloidal Quantum Dots.
    De Franco M; Zhu D; Asaithambi A; Prato M; Charalampous E; Christodoulou S; Kriegel I; De Trizio L; Manna L; Bahmani Jalali H; Di Stasio F
    ACS Energy Lett; 2022 Nov; 7(11):3788-3790. PubMed ID: 36398094
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Nanobio applications of quantum dots in cancer: imaging, sensing, and targeting.
    SalmanOgli A
    Cancer Nanotechnol; 2011; 2(1-6):1-19. PubMed ID: 26069481
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Se/S Ratio-Dependent Properties and Application of Gradient-Alloyed CdSe
    Zhang H; Wang F; Kuang Y; Li Z; Lin Q; Shen H; Wang H; Guo L; Li LS
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):6238-6247. PubMed ID: 30698938
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Synthesis of near-infrared-emitting CdTe/CdSe/ZnSe/ZnS heterostructure.
    Yang P
    J Nanosci Nanotechnol; 2014 Apr; 14(4):3147-54. PubMed ID: 24734747
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Identifying Clusters and/or Small-Size Quantum Dots in Colloidal CdSe Ensembles with Optical Spectroscopy.
    Li L; Zhang M; Rowell N; Kreouzis T; Fan H; Yu Q; Huang W; Chen X; Yu K
    J Phys Chem Lett; 2019 Oct; 10(20):6399-6408. PubMed ID: 31593476
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Temperature dependent fluorescence of CuInS/ZnS quantum dots in near infrared region.
    Le Ngoc T; Kim JS
    J Nanosci Nanotechnol; 2013 Sep; 13(9):6115-9. PubMed ID: 24205611
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Facile and green synthesis of CdSe quantum dots in protein matrix: tuning of morphology and optical properties.
    Ahmed M; Guleria A; Rath MC; Singh AK; Adhikari S; Sarkar SK
    J Nanosci Nanotechnol; 2014 Aug; 14(8):5730-42. PubMed ID: 25935997
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Synthesis and characterization of high quantum yield and oscillator strength 6-chloro-2-(4-cynophenyl)-4-phenyl quinoline (cl-CN-DPQ) organic phosphor for solid-state lighting.
    Ghate M; Dahule HK; Thejo Kalyani N; Dhoble SJ
    Luminescence; 2018 Mar; 33(2):297-304. PubMed ID: 29044939
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Continuous-flow synthesis of CdSe quantum dots: a size-tunable and scalable approach.
    Mirhosseini Moghaddam M; Baghbanzadeh M; Sadeghpour A; Glatter O; Kappe CO
    Chemistry; 2013 Aug; 19(35):11629-36. PubMed ID: 23857757
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Lead-Free, Blue Emitting Bismuth Halide Perovskite Quantum Dots.
    Leng M; Chen Z; Yang Y; Li Z; Zeng K; Li K; Niu G; He Y; Zhou Q; Tang J
    Angew Chem Int Ed Engl; 2016 Nov; 55(48):15012-15016. PubMed ID: 27791304
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Near-Room Temperature Synthesis of Core/Shell-Structured Quantum Dots.
    Kim J; Kang E; Son J; Cheong IW; Joo J
    J Nanosci Nanotechnol; 2015 Sep; 15(9):7146-52. PubMed ID: 26716300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Photoassisted synthesis of CdSe and core-shell CdSe/CdS quantum dots.
    Lin YW; Hsieh MM; Liu CP; Chang HT
    Langmuir; 2005 Jan; 21(2):728-34. PubMed ID: 15641847
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Bacterial Synthesis of Ternary CdSAg Quantum Dots through Cation Exchange: Tuning the Composition and Properties of Biological Nanoparticles for Bioimaging and Photovoltaic Applications.
    Órdenes-Aenishanslins N; Anziani-Ostuni G; Monrás JP; Tello A; Bravo D; Toro-Ascuy D; Soto-Rifo R; Prasad PN; Pérez-Donoso JM
    Microorganisms; 2020 Apr; 8(5):. PubMed ID: 32349316
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.