These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 32073849)

  • 1. Deriving a Polarizable Force Field for Biomolecular Building Blocks with Minimal Empirical Calibration.
    Visscher KM; Geerke DP
    J Phys Chem B; 2020 Mar; 124(9):1628-1636. PubMed ID: 32073849
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A QM/MM Derived Polarizable Water Model for Molecular Simulation.
    Visscher KM; Swope WC; Geerke DP
    Molecules; 2018 Nov; 23(12):. PubMed ID: 30501058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deriving Force-Field Parameters from First Principles Using a Polarizable and Higher Order Dispersion Model.
    Visscher KM; Geerke DP
    J Chem Theory Comput; 2019 Mar; 15(3):1875-1883. PubMed ID: 30763086
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Density-Dependent Formulation of Dispersion-Repulsion Interactions in Hybrid Multiscale Quantum/Molecular Mechanics (QM/MM) Models.
    Curutchet C; Cupellini L; Kongsted J; Corni S; Frediani L; Steindal AH; Guido CA; Scalmani G; Mennucci B
    J Chem Theory Comput; 2018 Mar; 14(3):1671-1681. PubMed ID: 29439575
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomolecular force fields: where have we been, where are we now, where do we need to go and how do we get there?
    Dauber-Osguthorpe P; Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):133-203. PubMed ID: 30506158
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global Optimization of the Lennard-Jones Parameters for the Drude Polarizable Force Field.
    Rupakheti CR; MacKerell AD; Roux B
    J Chem Theory Comput; 2021 Nov; 17(11):7085-7095. PubMed ID: 34609863
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Further Optimization and Validation of the Classical Drude Polarizable Protein Force Field.
    Lin FY; Huang J; Pandey P; Rupakheti C; Li J; Roux BT; MacKerell AD
    J Chem Theory Comput; 2020 May; 16(5):3221-3239. PubMed ID: 32282198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of Electrostatic Parameters for a Polarizable Force Field Based on the Classical Drude Oscillator.
    Anisimov VM; Lamoureux G; Vorobyov IV; Huang N; Roux B; MacKerell AD
    J Chem Theory Comput; 2005 Jan; 1(1):153-68. PubMed ID: 26641126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new force field (ECEPP-05) for peptides, proteins, and organic molecules.
    Arnautova YA; Jagielska A; Scheraga HA
    J Phys Chem B; 2006 Mar; 110(10):5025-44. PubMed ID: 16526746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polarizable Force Field for Molecular Ions Based on the Classical Drude Oscillator.
    Lin FY; Lopes PEM; Harder E; Roux B; MacKerell AD
    J Chem Inf Model; 2018 May; 58(5):993-1004. PubMed ID: 29624370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Polarizable Force Field for DNA Based on the Classical Drude Oscillator: I. Refinement Using Quantum Mechanical Base Stacking and Conformational Energetics.
    Lemkul JA; MacKerell AD
    J Chem Theory Comput; 2017 May; 13(5):2053-2071. PubMed ID: 28399366
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A quantum mechanical polarizable force field for biomolecular interactions.
    Donchev AG; Ozrin VD; Subbotin MV; Tarasov OV; Tarasov VI
    Proc Natl Acad Sci U S A; 2005 May; 102(22):7829-34. PubMed ID: 15911753
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building.
    Dupradeau FY; Pigache A; Zaffran T; Savineau C; Lelong R; Grivel N; Lelong D; Rosanski W; Cieplak P
    Phys Chem Chem Phys; 2010 Jul; 12(28):7821-39. PubMed ID: 20574571
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Polarizable empirical force field for sulfur-containing compounds based on the classical Drude oscillator model.
    Zhu X; MacKerell AD
    J Comput Chem; 2010 Sep; 31(12):2330-41. PubMed ID: 20575015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Determining polarizable force fields with electrostatic potentials from quantum mechanical linear response theory.
    Wang H; Yang W
    J Chem Phys; 2016 Jun; 144(22):224107. PubMed ID: 27305996
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of Representations and Response Models for Polarizable Force Fields.
    Li A; Voronin A; Fenley AT; Gilson MK
    J Phys Chem B; 2016 Aug; 120(33):8668-84. PubMed ID: 27248842
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic Optimization of a Fragment-Based Force Field against Experimental Pure-Liquid Properties Considering Large Compound Families: Application to Saturated Haloalkanes.
    Oliveira MP; Andrey M; Rieder SR; Kern L; Hahn DF; Riniker S; Horta BAC; Hünenberger PH
    J Chem Theory Comput; 2020 Dec; 16(12):7525-7555. PubMed ID: 33231449
    [TBL] [Abstract][Full Text] [Related]  

  • 18. FFParam: Standalone package for CHARMM additive and Drude polarizable force field parametrization of small molecules.
    Kumar A; Yoluk O; MacKerell AD
    J Comput Chem; 2020 Apr; 41(9):958-970. PubMed ID: 31886576
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning of Partial Charges Derived from High-Quality Quantum-Mechanical Calculations.
    Bleiziffer P; Schaller K; Riniker S
    J Chem Inf Model; 2018 Mar; 58(3):579-590. PubMed ID: 29461814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Some practical approaches to treating electrostatic polarization of proteins.
    Ji C; Mei Y
    Acc Chem Res; 2014 Sep; 47(9):2795-803. PubMed ID: 24883956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.