These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 32074000)

  • 1. An overview of cell disruption methods for intracellular biomolecules recovery.
    Gomes TA; Zanette CM; Spier MR
    Prep Biochem Biotechnol; 2020; 50(7):635-654. PubMed ID: 32074000
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Current Pretreatment/Cell Disruption and Extraction Methods Used to Improve Intracellular Lipid Recovery from Oleaginous Yeasts.
    Zainuddin MF; Fai CK; Ariff AB; Rios-Solis L; Halim M
    Microorganisms; 2021 Jan; 9(2):. PubMed ID: 33513696
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pilot- and process-scale techniques for cell disruption.
    Schütte H; Kula MR
    Biotechnol Appl Biochem; 1990 Dec; 12(6):599-620. PubMed ID: 2092722
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comprehensive review on the application of novel disruption techniques for proteins release from microalgae.
    Timira V; Meki K; Li Z; Lin H; Xu M; Pramod SN
    Crit Rev Food Sci Nutr; 2022; 62(16):4309-4325. PubMed ID: 33480267
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic cell disruption of microalgae biomass in biorefinery processes.
    Demuez M; Mahdy A; Tomás-Pejó E; González-Fernández C; Ballesteros M
    Biotechnol Bioeng; 2015 Oct; 112(10):1955-66. PubMed ID: 25976593
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Screening for Oily Yeasts Able to Convert Hydrolysates from Biomass to Biofuels While Maintaining Industrial Process Relevance.
    Slininger PJ; Dien BS; Quarterman JC; Thompson SR; Kurtzman CP
    Methods Mol Biol; 2019; 1995():249-283. PubMed ID: 31148134
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disruption of thin- and thick-wall microalgae using high pressure gases: Effects of gas species, pressure and treatment duration on the extraction of proteins and carotenoids.
    Yong TC; Chiu PH; Chen CH; Hung CH; Chen CN
    J Biosci Bioeng; 2020 Apr; 129(4):502-507. PubMed ID: 31732260
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cell disruption for microalgae biorefineries.
    Günerken E; D'Hondt E; Eppink MH; Garcia-Gonzalez L; Elst K; Wijffels RH
    Biotechnol Adv; 2015; 33(2):243-60. PubMed ID: 25656098
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of Downstream Processing, Extraction, and Quantification Strategies for Single Cell Oil Produced by the Oleaginous Yeasts
    Gorte O; Hollenbach R; Papachristou I; Steinweg C; Silve A; Frey W; Syldatk C; Ochsenreither K
    Front Bioeng Biotechnol; 2020; 8():355. PubMed ID: 32391350
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cell-wall disruption and lipid/astaxanthin extraction from microalgae: Chlorella and Haematococcus.
    Kim DY; Vijayan D; Praveenkumar R; Han JI; Lee K; Park JY; Chang WS; Lee JS; Oh YK
    Bioresour Technol; 2016 Jan; 199():300-310. PubMed ID: 26342788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The production of biocatalysts and biomolecules from extremophiles.
    Schiraldi C; De Rosa M
    Trends Biotechnol; 2002 Dec; 20(12):515-21. PubMed ID: 12443873
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bead milling disruption kinetics of microalgae: Process modeling, optimization and application to biomolecules recovery from Chlorella sorokiniana.
    Zinkoné TR; Gifuni I; Lavenant L; Pruvost J; Marchal L
    Bioresour Technol; 2018 Nov; 267():458-465. PubMed ID: 30036846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microalgal biomass pretreatment for integrated processing into biofuels, food, and feed.
    de Carvalho JC; Magalhães AI; de Melo Pereira GV; Medeiros ABP; Sydney EB; Rodrigues C; Aulestia DTM; de Souza Vandenberghe LP; Soccol VT; Soccol CR
    Bioresour Technol; 2020 Mar; 300():122719. PubMed ID: 31956056
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products.
    Tang DYY; Khoo KS; Chew KW; Tao Y; Ho SH; Show PL
    Bioresour Technol; 2020 May; 304():122997. PubMed ID: 32094007
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Organic Solvents on Microalgae Growth, Metabolism and Industrial Bioproduct Extraction: A Review.
    Miazek K; Kratky L; Sulc R; Jirout T; Aguedo M; Richel A; Goffin D
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28677659
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supercritical fluid extraction of valuable compounds from microalgal biomass.
    Yen HW; Yang SC; Chen CH; Jesisca ; Chang JS
    Bioresour Technol; 2015 May; 184():291-296. PubMed ID: 25455085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct lipid extraction from wet Chlamydomonas reinhardtii biomass using osmotic shock.
    Yoo G; Park WK; Kim CW; Choi YE; Yang JW
    Bioresour Technol; 2012 Nov; 123():717-22. PubMed ID: 22939599
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Potential for Microalgae as Bioreactors to Produce Pharmaceuticals.
    Yan N; Fan C; Chen Y; Hu Z
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27322258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanical cell disruption for lipid extraction from microalgal biomass.
    Halim R; Rupasinghe TW; Tull DL; Webley PA
    Bioresour Technol; 2013 Jul; 140():53-63. PubMed ID: 23672939
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.