BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 32074039)

  • 1. Are Antimony-Bismuth Aprons as Efficient as Lead Rubber Aprons in Providing Shielding against Scattered Radiation?
    Johansen S; Hauge IHR; Hogg P; England A; Lança L; Gunn C; Sanderud A
    J Med Imaging Radiat Sci; 2018 Jun; 49(2):201-206. PubMed ID: 32074039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Not all lightweight lead aprons and thyroid shields are alike.
    Fakhoury E; Provencher JA; Subramaniam R; Finlay DJ
    J Vasc Surg; 2019 Jul; 70(1):246-250. PubMed ID: 30292602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of the scattered radiations of lead and lead-free aprons in diagnostic radiology by MCNPX.
    Tayebi M; Shooli FS; Saeedi-Moghadam M
    Technol Health Care; 2017; 25(3):513-520. PubMed ID: 28085021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lead versus bismuth-antimony shield for fetal dose reduction at different gestational ages at CT pulmonary angiography.
    Chatterson LC; Leswick DA; Fladeland DA; Hunt MM; Webster ST
    Radiology; 2011 Aug; 260(2):560-7. PubMed ID: 21555348
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the radiation protection effect of different radiation protection aprons made of different materials.
    König AM; Verbe Zoum J; Fiebich M; Abissi PW; Mahnken AH
    Eur J Radiol; 2023 Jul; 164():110862. PubMed ID: 37209465
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of the transmitted exposure through lead equivalent aprons used in a radiology department, including the contribution from backscatter.
    Christodoulou EG; Goodsitt MM; Larson SC; Darner KL; Satti J; Chan HP
    Med Phys; 2003 Jun; 30(6):1033-8. PubMed ID: 12852526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How effective are lead-rubber aprons in protecting radiosensitive organs from secondary ionizing radiation?
    Hayre CM; Bungay H; Jeffery C
    Radiography (Lond); 2020 Nov; 26(4):e264-e269. PubMed ID: 32303421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Light-weight lead aprons--light on weight, protection or labelling accuracy?
    Muir S; McLeod R; Dove R
    Australas Phys Eng Sci Med; 2005 Jun; 28(2):128-30. PubMed ID: 16060320
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-Lead Protective Aprons for the Protection of Interventional Radiology Physicians from Radiation Exposure in Clinical Settings: An Initial Study.
    Kato M; Chida K; Munehisa M; Sato T; Inaba Y; Suzuki M; Zuguchi M
    Diagnostics (Basel); 2021 Sep; 11(9):. PubMed ID: 34573955
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Experimental and theoretical studies on radiation protective effect of a lighter non-lead protective apron].
    Takano Y; Okazaki K; Ono K; Kai M
    Nihon Hoshasen Gijutsu Gakkai Zasshi; 2005 Jul; 61(7):1027-32. PubMed ID: 16049417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model-based approach of scatter dose contributions and efficiency of apron shielding for radiation protection in CT.
    Weber N; Monnin P; Elandoy C; Ding S
    Phys Med; 2015 Dec; 31(8):889-896. PubMed ID: 26112350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simple quality control tool for assessing integrity of lead equivalent aprons.
    Livingstone RS; Varghese A
    Indian J Radiol Imaging; 2018; 28(2):258-262. PubMed ID: 30050253
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of the Radiation Attenuation Properties of Several Lead Free Composites by Monte Carlo Simulation.
    Kazempour M; Saeedimoghadam M; Shekoohi Shooli F; Shokrpour N
    J Biomed Phys Eng; 2015 Jun; 5(2):67-76. PubMed ID: 26157732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quality assurance of lead aprons for radiation protection.
    Revathy P; Kaginelli SB
    Radiat Prot Dosimetry; 2023 Dec; 199(20):2491-2494. PubMed ID: 38126849
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of dose savings of lead and lightweight aprons for shielding of 99m-Technetium radiation.
    Warren-Forward H; Cardew P; Smith B; Clack L; McWhirter K; Johnson S; Wessel K
    Radiat Prot Dosimetry; 2007; 124(2):89-96. PubMed ID: 17525062
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the effectiveness of X-ray protective aprons in experimental and practical fields.
    Mori H; Koshida K; Ishigamori O; Matsubara K
    Radiol Phys Technol; 2014 Jan; 7(1):158-66. PubMed ID: 24338033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Influence of storage conditions and usage time on the quality of lead rubber].
    Modlińska SM; Bosowska J; Cebula M
    Med Pr; 2022 Feb; 73(1):13-17. PubMed ID: 34940763
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Answers to if the Lead Aprons are Really Helpful in Nuclear Medicine from the Perspective of Spectroscopy.
    He X; Zhao R; Rong L; Yao K; Chen S; Wei B
    Radiat Prot Dosimetry; 2017 May; 174(4):558-564. PubMed ID: 27613748
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dose rates in nuclear medicine and the effectiveness of lead aprons: updating the department's knowledge on old and new procedures.
    Young AM
    Nucl Med Commun; 2013 Mar; 34(3):254-64. PubMed ID: 23353888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physical analysis of the shielding capacity for a lightweight apron designed for shielding low intensity scattering X-rays.
    Kim SC; Choi JR; Jeon BK
    Sci Rep; 2016 Jul; 6():27721. PubMed ID: 27461510
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.