BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 32074121)

  • 1. A re-evaluation of silk measurement by the cecropia caterpillar (Hyalophora cecropia) during cocoon construction reveals use of a silk odometer that is temporally regulated.
    Sehadova H; Guerra PA; Sauman I; Reppert SM
    PLoS One; 2020; 15(2):e0228453. PubMed ID: 32074121
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction: A re-evaluation of silk measurement by the cecropia caterpillar (Hyalophora cecropia) during cocoon construction reveals use of a silk odometer that is temporally regulated.
    PLOS ONE Staff
    PLoS One; 2020; 15(3):e0230597. PubMed ID: 32163516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dimorphic cocoons of the cecropia moth (Hyalophora cecropia): Morphological, behavioral, and biophysical differences.
    Guerra PA; Reppert SM
    PLoS One; 2017; 12(3):e0174023. PubMed ID: 28329006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Architectural evolution in cocoons spun by Hyalophora (Lepidoptera; Saturniidae) silk moth species.
    Guerra PA; Lawson LP; Gatto LJ; Albright ME; Smith SJ
    Sci Rep; 2020 Mar; 10(1):5615. PubMed ID: 32221410
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dimorphic cocoons of the robin moth, Hyalophora cecropia, reflect the existence of two distinct architectural syndromes.
    Parlin AF; Guerra PA
    J Exp Biol; 2021 May; 224(10):. PubMed ID: 34042973
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comprehensive gene expression analysis of the unique three-layered cocoon of the cecropia moth, Hyalophora cecropia.
    Rouhová L; Podlahová Š; Kmet P; Žurovec M; Sehadová H; Sauman I
    Insect Biochem Mol Biol; 2024 Jun; 171():104152. PubMed ID: 38944399
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Role of Filippi's Glands in the Silk Moths Cocoon Construction.
    Sehadova H; Zavodska R; Rouhova L; Zurovec M; Sauman I
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948319
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The silk cocoon of the silkworm, Bombyx mori: macro structure and its influence on transmural diffusion of oxygen and water vapor.
    Blossman-Myer B; Burggren WW
    Comp Biochem Physiol A Mol Integr Physiol; 2010 Feb; 155(2):259-63. PubMed ID: 19913633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The beta-1, 4-N-acetylglucosaminidase 1 gene, selected by domestication and breeding, is involved in cocoon construction of Bombyx mori.
    Li C; Tong X; Zuo W; Hu H; Xiong G; Han M; Gao R; Luan Y; Lu K; Gai T; Xiang Z; Lu C; Dai F
    PLoS Genet; 2020 Jul; 16(7):e1008907. PubMed ID: 32667927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Insights into the structure and composition of mineralized hard cocoons constructed by the oriental moth, Monema (Cnidocampa) flavescens Walker.
    Qin L; Li J; Guo K; Lu M; Zhang Y; Zhang X; Zeng Y; Wang X; Xia Q; Zhao P; Zhang AB; Dong Z
    Insect Biochem Mol Biol; 2022 Dec; 151():103878. PubMed ID: 36410578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defense role of the cocoon in the silk worm Bombyx mori L.
    Pandiarajan J; Cathrin BP; Pratheep T; Krishnan M
    Rapid Commun Mass Spectrom; 2011 Nov; 25(21):3203-6. PubMed ID: 22006381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential mode of protection of silkworm pupae from environmental stress by harboring the bacterial biofilm on the surfaces of silk cocoons.
    Halder PK; Naskar D; Kumar A; Yao J; Kundu SC; Ghosh AS
    Curr Microbiol; 2015 Feb; 70(2):228-34. PubMed ID: 25292249
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review structure of silk by raman spectromicroscopy: from the spinning glands to the fibers.
    Lefèvre T; Paquet-Mercier F; Rioux-Dubé JF; Pézolet M
    Biopolymers; 2012 Jun; 97(6):322-36. PubMed ID: 21882171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and Mechanical Properties of Cocoons of Antherina suraka (Saturniidae, Lepidoptera), an Endemic Species Used for Silk Production in Madagascar.
    Randrianandrasana M; Wu WY; Carney DA; Wagoner Johnson AJ; Berenbaum MR
    J Insect Sci; 2017 Jan; 17(1):. PubMed ID: 28130459
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protease inhibitors in Bombyx mori silk might participate in protecting the pupating larva from microbial infection.
    Li YS; Liu HW; Zhu R; Xia QY; Zhao P
    Insect Sci; 2016 Dec; 23(6):835-842. PubMed ID: 26013638
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimicrobial components in the cocoon silk of silkworm, Bombyx mori.
    Dong Z; Xia Q; Zhao P
    Int J Biol Macromol; 2023 Jan; 224():68-78. PubMed ID: 36252626
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sequential steps of macroautophagy and chaperone-mediated autophagy are involved in the irreversible process of posterior silk gland histolysis during metamorphosis of Bombyx mori.
    Shiba H; Yabu T; Sudayama M; Mano N; Arai N; Nakanishi T; Hosono K
    J Exp Biol; 2016 Apr; 219(Pt 8):1146-53. PubMed ID: 26944491
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study on the microstructure of African wild silk cocoon shells and fibers.
    Teshome A; Vollrath F; Raina SK; Kabaru JM; Onyari J
    Int J Biol Macromol; 2012 Jan; 50(1):63-8. PubMed ID: 21986544
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Some observations on the structure and function of the spinning apparatus in the silkworm Bombyx mori.
    Asakura T; Umemura K; Nakazawa Y; Hirose H; Higham J; Knight D
    Biomacromolecules; 2007 Jan; 8(1):175-81. PubMed ID: 17206804
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A histochemical study of the posterior silk glands of Bombyx mori during metamorphosis from larvae to pupae using frozen sections.
    Kawamoto K; Kawamoto T; Shiba H; Hosono K
    Biotech Histochem; 2014 Feb; 89(2):145-52. PubMed ID: 24032740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.