BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

94 related articles for article (PubMed ID: 3207429)

  • 1. Human hexokinase: sequences of amino- and carboxyl-terminal halves are homologous.
    Nishi S; Seino S; Bell GI
    Biochem Biophys Res Commun; 1988 Dec; 157(3):937-43. PubMed ID: 3207429
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functional organization and evolution of mammalian hexokinases: mutations that caused the loss of catalytic activity in N-terminal halves of type I and type III isozymes.
    Tsai HJ
    Arch Biochem Biophys; 1999 Sep; 369(1):149-56. PubMed ID: 10462451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complete amino acid sequence of the type II isozyme of rat hexokinase, deduced from the cloned cDNA: comparison with a hexokinase from novikoff ascites tumor.
    Thelen AP; Wilson JE
    Arch Biochem Biophys; 1991 May; 286(2):645-51. PubMed ID: 1897984
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A recombinant human 'mini'-hexokinase is catalytically active and regulated by hexose 6-phosphates.
    Magnani M; Bianchi M; Casabianca A; Stocchi V; Daniele A; Altruda F; Ferrone M; Silengo L
    Biochem J; 1992 Jul; 285 ( Pt 1)(Pt 1):193-9. PubMed ID: 1637300
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional organization of mammalian hexokinases: both N- and C-terminal halves of the rat type II isozyme possess catalytic sites.
    Tsai HJ; Wilson JE
    Arch Biochem Biophys; 1996 May; 329(1):17-23. PubMed ID: 8619630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete amino acid sequence of the type III isozyme of rat hexokinase, deduced from the cloned cDNA.
    Schwab DA; Wilson JE
    Arch Biochem Biophys; 1991 Mar; 285(2):365-70. PubMed ID: 1897938
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional organization of mammalian hexokinase II. Retention of catalytic and regulatory functions in both the NH2- and COOH-terminal halves.
    Ardehali H; Yano Y; Printz RL; Koch S; Whitesell RR; May JM; Granner DK
    J Biol Chem; 1996 Jan; 271(4):1849-52. PubMed ID: 8567628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glucose phosphorylation. Interaction of a 50-amino acid peptide of yeast hexokinase with trinitrophenyl ATP.
    Arora KK; Shenbagamurthi P; Fanciulli M; Pedersen PL
    J Biol Chem; 1990 Mar; 265(9):5324-8. PubMed ID: 2318895
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The evolution of hexokinases.
    Ureta T; Medina C; Preller A
    Arch Biol Med Exp; 1987; 20(3-4):343-57. PubMed ID: 8816075
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification, expression and bioactivity of hexokinase in amphioxus: insights into evolution of vertebrate hexokinase genes.
    Li M; Gao Z; Wang Y; Wang H; Zhang S
    Gene; 2014 Feb; 535(2):318-26. PubMed ID: 24262936
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure/function relationships in hexokinase. Site-directed mutational analyses and characterization of overexpressed fragments implicate different functions for the N- and C-terminal halves of the enzyme.
    Arora KK; Filburn CR; Pedersen PL
    J Biol Chem; 1993 Aug; 268(24):18259-66. PubMed ID: 8349702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolation and characterization of the discrete N- and C-terminal halves of rat brain hexokinase: retention of full catalytic activity in the isolated C-terminal half.
    White TK; Wilson JE
    Arch Biochem Biophys; 1989 Nov; 274(2):375-93. PubMed ID: 2802617
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bovine hexokinase type I: full-length cDNA sequence and characterisation of the recombinant enzyme.
    Andreoni F; Serafini G; Laguardia ME; Magnani M
    Mol Cell Biochem; 2005 Jan; 268(1-2):9-18. PubMed ID: 15724432
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Complete amino acid sequence of rat brain hexokinase, deduced from the cloned cDNA, and proposed structure of a mammalian hexokinase.
    Schwab DA; Wilson JE
    Proc Natl Acad Sci U S A; 1989 Apr; 86(8):2563-7. PubMed ID: 2704734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Rat brain hexokinase: location of the allosteric regulatory site in a structural domain at the N-terminus of the enzyme.
    White TK; Wilson JE
    Arch Biochem Biophys; 1987 Dec; 259(2):402-11. PubMed ID: 3426236
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Functional consequences of mutation of highly conserved serine residues, found at equivalent positions in the N- and C-terminal domains of mammalian hexokinases.
    Baijal M; Wilson JE
    Arch Biochem Biophys; 1992 Oct; 298(1):271-8. PubMed ID: 1524437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Functional interactions between the noncovalently associated N- and C-terminal halves of mammalian Type I hexokinase.
    Sui D; Wilson JE
    Arch Biochem Biophys; 2002 May; 401(1):21-8. PubMed ID: 12054483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The complete amino acid sequence of the catalytic domain of rat brain hexokinase, deduced from the cloned cDNA.
    Schwab DA; Wilson JE
    J Biol Chem; 1988 Mar; 263(7):3220-4. PubMed ID: 3277968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Human hexokinase II: sequence and homology to other hexokinases.
    Deeb SS; Malkki M; Laakso M
    Biochem Biophys Res Commun; 1993 Nov; 197(1):68-74. PubMed ID: 8250948
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human hexokinase type I microheterogeneity is due to different amino-terminal sequences.
    Magnani M; Serafini G; Bianchi M; Casabianca A; Stocchi V
    J Biol Chem; 1991 Jan; 266(1):502-5. PubMed ID: 1985912
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.