These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
416 related articles for article (PubMed ID: 32074939)
1. Carbon price forecasting based on modified ensemble empirical mode decomposition and long short-term memory optimized by improved whale optimization algorithm. Yang S; Chen D; Li S; Wang W Sci Total Environ; 2020 May; 716():137117. PubMed ID: 32074939 [TBL] [Abstract][Full Text] [Related]
2. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting. Yang S; Yuan A; Yu Z Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919 [TBL] [Abstract][Full Text] [Related]
3. An innovative random forest-based nonlinear ensemble paradigm of improved feature extraction and deep learning for carbon price forecasting. Wang J; Sun X; Cheng Q; Cui Q Sci Total Environ; 2021 Mar; 762():143099. PubMed ID: 33127140 [TBL] [Abstract][Full Text] [Related]
4. Carbon price prediction based on multi-factor MEEMD-LSTM model. Min Y; Shuzhen Z; Wuwei L Heliyon; 2022 Dec; 8(12):e12562. PubMed ID: 36643315 [TBL] [Abstract][Full Text] [Related]
5. A Novel Hybrid Data-Driven Model for Daily Land Surface Temperature Forecasting Using Long Short-Term Memory Neural Network Based on Ensemble Empirical Mode Decomposition. Zhang X; Zhang Q; Zhang G; Nie Z; Gui Z; Que H Int J Environ Res Public Health; 2018 May; 15(5):. PubMed ID: 29883381 [TBL] [Abstract][Full Text] [Related]
6. Gas Concentration Prediction Based on IWOA-LSTM-CEEMDAN Residual Correction Model. Xu N; Wang X; Meng X; Chang H Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746193 [TBL] [Abstract][Full Text] [Related]
7. A novel hybrid learning paradigm with feature extraction for carbon price prediction based on Bi-directional long short-term memory network optimized by an improved sparrow search algorithm. Zhou J; Xu Z; Wang S Environ Sci Pollut Res Int; 2022 Sep; 29(43):65585-65598. PubMed ID: 35488159 [TBL] [Abstract][Full Text] [Related]
8. Forecasting China carbon price using an error-corrected secondary decomposition hybrid model integrated fuzzy dispersion entropy and deep learning paradigm. Yun P; Zhou Y; Liu C; Wu Y; Pan D Environ Sci Pollut Res Int; 2024 Mar; 31(11):16530-16553. PubMed ID: 38321281 [TBL] [Abstract][Full Text] [Related]
9. Short-Term Load Forecasting Based on EEMD-WOA-LSTM Combination Model. Shao L; Guo Q; Li C; Li J; Yan H Appl Bionics Biomech; 2022; 2022():2166082. PubMed ID: 36060556 [TBL] [Abstract][Full Text] [Related]
10. A novel short-term carbon emission prediction model based on secondary decomposition method and long short-term memory network. Kong F; Song J; Yang Z Environ Sci Pollut Res Int; 2022 Sep; 29(43):64983-64998. PubMed ID: 35482236 [TBL] [Abstract][Full Text] [Related]
11. Predicting regional carbon price in China based on multi-factor HKELM by combining secondary decomposition and ensemble learning. Hu B; Cheng Y PLoS One; 2023; 18(12):e0285311. PubMed ID: 38085727 [TBL] [Abstract][Full Text] [Related]
12. Research on a Novel Hybrid Decomposition-Ensemble Learning Paradigm Based on VMD and IWOA for PM Guo H; Guo Y; Zhang W; He X; Qu Z Int J Environ Res Public Health; 2021 Jan; 18(3):. PubMed ID: 33498934 [TBL] [Abstract][Full Text] [Related]
13. Carbon price prediction based on multiple decomposition and XGBoost algorithm. Xu K; Xia Z; Cheng M; Tan X Environ Sci Pollut Res Int; 2023 Aug; 30(38):89165-89179. PubMed ID: 37442936 [TBL] [Abstract][Full Text] [Related]
14. Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow. Chen Q; Wen D; Li X; Chen D; Lv H; Zhang J; Gao P PLoS One; 2019; 14(9):e0222365. PubMed ID: 31509599 [TBL] [Abstract][Full Text] [Related]
15. Carbon price prediction for China's ETS pilots using variational mode decomposition and optimized extreme learning machine. Chai S; Zhang Z; Zhang Z Ann Oper Res; 2021 Nov; ():1-22. PubMed ID: 34812214 [TBL] [Abstract][Full Text] [Related]
16. Multi-step-ahead and interval carbon price forecasting using transformer-based hybrid model. Yue W; Zhong W; Xiaoyi W; Xinyu K Environ Sci Pollut Res Int; 2023 Sep; 30(42):95692-95719. PubMed ID: 37558913 [TBL] [Abstract][Full Text] [Related]
17. Carbon price prediction based on decomposition technique and extreme gradient boosting optimized by the grey wolf optimizer algorithm. Feng M; Duan Y; Wang X; Zhang J; Ma L Sci Rep; 2023 Oct; 13(1):18447. PubMed ID: 37891187 [TBL] [Abstract][Full Text] [Related]
18. A carbon price hybrid forecasting model based on data multi-scale decomposition and machine learning. Yang P; Wang Y; Zhao S; Chen Z; Li Y Environ Sci Pollut Res Int; 2023 Jan; 30(2):3252-3269. PubMed ID: 35943654 [TBL] [Abstract][Full Text] [Related]
19. Breaking through the limitation of carbon price forecasting: A novel hybrid model based on secondary decomposition and nonlinear integration. Lan Y; Huangfu Y; Huang Z; Zhang C J Environ Manage; 2024 Jun; 362():121253. PubMed ID: 38823294 [TBL] [Abstract][Full Text] [Related]
20. [China's Energy Consumption and Carbon Peak Path Under Different Scenarios]. Chen XY; Zhou C; Wang T Huan Jing Ke Xue; 2023 Oct; 44(10):5464-5477. PubMed ID: 37827764 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]