These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
281 related articles for article (PubMed ID: 32074979)
1. Hybrid Network with Attention Mechanism for Detection and Location of Myocardial Infarction Based on 12-Lead Electrocardiogram Signals. Fu L; Lu B; Nie B; Peng Z; Liu H; Pi X Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32074979 [TBL] [Abstract][Full Text] [Related]
2. ML-ResNet: A novel network to detect and locate myocardial infarction using 12 leads ECG. Han C; Shi L Comput Methods Programs Biomed; 2020 Mar; 185():105138. PubMed ID: 31669959 [TBL] [Abstract][Full Text] [Related]
3. MFB-LANN: A lightweight and updatable myocardial infarction diagnosis system based on convolutional neural networks and active learning. He Z; Yuan Z; An P; Zhao J; Du B Comput Methods Programs Biomed; 2021 Oct; 210():106379. PubMed ID: 34517182 [TBL] [Abstract][Full Text] [Related]
4. A hybrid deep learning network for automatic diagnosis of cardiac arrhythmia based on 12-lead ECG. Bai X; Dong X; Li Y; Liu R; Zhang H Sci Rep; 2024 Oct; 14(1):24441. PubMed ID: 39424921 [TBL] [Abstract][Full Text] [Related]
5. Classification of myocardial infarction based on hybrid feature extraction and artificial intelligence tools by adopting tunable-Q wavelet transform (TQWT), variational mode decomposition (VMD) and neural networks. Zeng W; Yuan J; Yuan C; Wang Q; Liu F; Wang Y Artif Intell Med; 2020 Jun; 106():101848. PubMed ID: 32593387 [TBL] [Abstract][Full Text] [Related]
6. Automated ECG classification using a non-local convolutional block attention module. Wang J; Qiao X; Liu C; Wang X; Liu Y; Yao L; Zhang H Comput Methods Programs Biomed; 2021 May; 203():106006. PubMed ID: 33735660 [TBL] [Abstract][Full Text] [Related]
7. A coordinated adaptive multiscale enhanced spatio-temporal fusion network for multi-lead electrocardiogram arrhythmia detection. Yang Z; Jin A; Li Y; Yu X; Xu X; Wang J; Li Q; Guo X; Liu Y Sci Rep; 2024 Sep; 14(1):20828. PubMed ID: 39242748 [TBL] [Abstract][Full Text] [Related]
8. ECG-based multi-class arrhythmia detection using spatio-temporal attention-based convolutional recurrent neural network. Zhang J; Liu A; Gao M; Chen X; Zhang X; Chen X Artif Intell Med; 2020 Jun; 106():101856. PubMed ID: 32593390 [TBL] [Abstract][Full Text] [Related]
9. Myocardial infarction detection method based on the continuous T-wave area feature and multi-lead-fusion deep features. Jiang M; Bian F; Zhang J; Huang T; Xia L; Chu Y; Wang Z; Jiang J Physiol Meas; 2024 May; 45(5):. PubMed ID: 38697203 [No Abstract] [Full Text] [Related]
10. HARDC : A novel ECG-based heartbeat classification method to detect arrhythmia using hierarchical attention based dual structured RNN with dilated CNN. Islam MS; Hasan KF; Sultana S; Uddin S; Lio' P; Quinn JMW; Moni MA Neural Netw; 2023 May; 162():271-287. PubMed ID: 36921434 [TBL] [Abstract][Full Text] [Related]
11. Automated interpretable detection of myocardial infarction fusing energy entropy and morphological features. Han C; Shi L Comput Methods Programs Biomed; 2019 Jul; 175():9-23. PubMed ID: 31104718 [TBL] [Abstract][Full Text] [Related]
12. A visually interpretable detection method combines 3-D ECG with a multi-VGG neural network for myocardial infarction identification. Fang R; Lu CC; Chuang CT; Chang WH Comput Methods Programs Biomed; 2022 Jun; 219():106762. PubMed ID: 35378394 [TBL] [Abstract][Full Text] [Related]
13. Real-Time Multilead Convolutional Neural Network for Myocardial Infarction Detection. Liu W; Zhang M; Zhang Y; Liao Y; Huang Q; Chang S; Wang H; He J IEEE J Biomed Health Inform; 2018 Sep; 22(5):1434-1444. PubMed ID: 29990164 [TBL] [Abstract][Full Text] [Related]
14. Myocardial Infarction Detection Based on Multi-lead Ensemble Neural Network. Wang HM; Zhao W; Jia DY; Hu J; Li ZQ; Yan C; You TY Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():2614-2617. PubMed ID: 31946432 [TBL] [Abstract][Full Text] [Related]
15. Multi-branch myocardial infarction detection and localization framework based on multi-instance learning and domain knowledge. Li X; Huang Y; Ning Y; Wang M; Cai W Physiol Meas; 2024 Apr; 45(4):. PubMed ID: 38599223 [No Abstract] [Full Text] [Related]
16. EvoMBN: Evolving Multi-Branch Networks on Myocardial Infarction Diagnosis Using 12-Lead Electrocardiograms. Liu W; Ji J; Chang S; Wang H; He J; Huang Q Biosensors (Basel); 2021 Dec; 12(1):. PubMed ID: 35049642 [TBL] [Abstract][Full Text] [Related]
17. [Electrocardiogram signal classification based on fusion method of residual network and self-attention mechanism]. Yuan C; Liu Z; Wang C; Yang F Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2023 Jun; 40(3):474-481. PubMed ID: 37380386 [TBL] [Abstract][Full Text] [Related]
18. Multi-information fusion neural networks for arrhythmia automatic detection. Chen A; Wang F; Liu W; Chang S; Wang H; He J; Huang Q Comput Methods Programs Biomed; 2020 Sep; 193():105479. PubMed ID: 32388066 [TBL] [Abstract][Full Text] [Related]
19. Detection of Myocardial Infarction Using ECG and Multi-Scale Feature Concatenate. Jian JZ; Ger TR; Lai HH; Ku CM; Chen CA; Abu PAR; Chen SL Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33803265 [TBL] [Abstract][Full Text] [Related]
20. MCA-net: A multi-task channel attention network for Myocardial infarction detection and location using 12-lead ECGs. Pan W; An Y; Guan Y; Wang J Comput Biol Med; 2022 Nov; 150():106199. PubMed ID: 37859291 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]