These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 32074980)

  • 1. Evaluation of HoloLens Tracking and Depth Sensing for Indoor Mapping Applications.
    Hübner P; Clintworth K; Liu Q; Weinmann M; Wursthorn S
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32074980
    [TBL] [Abstract][Full Text] [Related]  

  • 2. HyMoTrack: A Mobile AR Navigation System for Complex Indoor Environments.
    Gerstweiler G; Vonach E; Kaufmann H
    Sensors (Basel); 2015 Dec; 16(1):. PubMed ID: 26712755
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Augmented Reality Technology Using Microsoft HoloLens in Anatomic Pathology.
    Hanna MG; Ahmed I; Nine J; Prajapati S; Pantanowitz L
    Arch Pathol Lab Med; 2018 May; 142(5):638-644. PubMed ID: 29384690
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HoloLens-Based Vascular Localization System: Precision Evaluation Study With a Three-Dimensional Printed Model.
    Jiang T; Yu D; Wang Y; Zan T; Wang S; Li Q
    J Med Internet Res; 2020 Apr; 22(4):e16852. PubMed ID: 32301738
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-dimensional cameras and skeleton pose tracking for physical function assessment: A review of uses, validity, current developments and Kinect alternatives.
    Clark RA; Mentiplay BF; Hough E; Pua YH
    Gait Posture; 2019 Feb; 68():193-200. PubMed ID: 30500731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Towards Kilo-Hertz 6-DoF Visual Tracking Using an Egocentric Cluster of Rolling Shutter Cameras.
    Bapat A; Dunn E; Frahm JM
    IEEE Trans Vis Comput Graph; 2016 Nov; 22(11):2358-67. PubMed ID: 27479967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Augmenting Microsoft's HoloLens with vuforia tracking for neuronavigation.
    Frantz T; Jansen B; Duerinck J; Vandemeulebroucke J
    Healthc Technol Lett; 2018 Oct; 5(5):221-225. PubMed ID: 30464854
    [TBL] [Abstract][Full Text] [Related]  

  • 8. UltrARsound: in situ visualization of live ultrasound images using HoloLens 2.
    von Haxthausen F; Moreta-Martinez R; Pose Díez de la Lastra A; Pascau J; Ernst F
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):2081-2091. PubMed ID: 35776399
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced RGB-D Mapping Method for Detailed 3D Indoor and Outdoor Modeling.
    Tang S; Zhu Q; Chen W; Darwish W; Wu B; Hu H; Chen M
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690028
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIMA SLAM: Tracking Independently and Mapping Altogether for an Uncalibrated Multi-Camera System.
    Ince OF; Kim JS
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33435556
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effectiveness of the HoloLens mixed-reality headset in minimally invasive surgery: a simulation-based feasibility study.
    Al Janabi HF; Aydin A; Palaneer S; Macchione N; Al-Jabir A; Khan MS; Dasgupta P; Ahmed K
    Surg Endosc; 2020 Mar; 34(3):1143-1149. PubMed ID: 31214807
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clinical Feasibility of a Wearable Mixed-Reality Device in Neurosurgery.
    Incekara F; Smits M; Dirven C; Vincent A
    World Neurosurg; 2018 Oct; 118():e422-e427. PubMed ID: 30257298
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adaptive Monocular Visual-Inertial SLAM for Real-Time Augmented Reality Applications in Mobile Devices.
    Piao JC; Kim SD
    Sensors (Basel); 2017 Nov; 17(11):. PubMed ID: 29112143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Accuracy Comparison of Three Simultaneous Localization and Mapping (SLAM)-Based Indoor Mapping Technologies.
    Chen Y; Tang J; Jiang C; Zhu L; Lehtomäki M; Kaartinen H; Kaijaluoto R; Wang Y; Hyyppä J; Hyyppä H; Zhou H; Pei L; Chen R
    Sensors (Basel); 2018 Sep; 18(10):. PubMed ID: 30257505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-camera dataset for depth estimation in an indoor scenario.
    Marin G; Agresti G; Minto L; Zanuttigh P
    Data Brief; 2019 Dec; 27():104619. PubMed ID: 31687438
    [TBL] [Abstract][Full Text] [Related]  

  • 16. SLAM-based dense surface reconstruction in monocular Minimally Invasive Surgery and its application to Augmented Reality.
    Chen L; Tang W; John NW; Wan TR; Zhang JJ
    Comput Methods Programs Biomed; 2018 May; 158():135-146. PubMed ID: 29544779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pedicle screw navigation using surface digitization on the Microsoft HoloLens.
    Liebmann F; Roner S; von Atzigen M; Scaramuzza D; Sutter R; Snedeker J; Farshad M; Fürnstahl P
    Int J Comput Assist Radiol Surg; 2019 Jul; 14(7):1157-1165. PubMed ID: 30993519
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pulse Based Time-of-Flight Range Sensing.
    Sarbolandi H; Plack M; Kolb A
    Sensors (Basel); 2018 May; 18(6):. PubMed ID: 29882901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of optical see-through head-mounted displays for surgical interventions with object-anchored 2D-display.
    Qian L; Barthel A; Johnson A; Osgood G; Kazanzides P; Navab N; Fuerst B
    Int J Comput Assist Radiol Surg; 2017 Jun; 12(6):901-910. PubMed ID: 28343301
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real world usability analysis of two augmented reality headsets in visceral surgery.
    Moosburner S; Remde C; Tang P; Queisner M; Haep N; Pratschke J; Sauer IM
    Artif Organs; 2019 Jul; 43(7):694-698. PubMed ID: 30485464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.