These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 32075031)

  • 1. Motion Artifact Suppression for Insulated EMG to Control Myoelectric Prostheses.
    Roland T
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32075031
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultra-Low-Power Digital Filtering for Insulated EMG Sensing.
    Roland T; Amsuess S; Russold MF; Baumgartner W
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An Insulated Flexible Sensor for Stable Electromyography Detection: Applicationto Prosthesis Control.
    Roland T; Wimberger K; Amsuess S; Russold MF; Baumgartner W
    Sensors (Basel); 2019 Feb; 19(4):. PubMed ID: 30813504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel procedure to automate the removal of PLI and motion artifacts using mode decomposition to enhance pattern recognition of sEMG signals for myoelectric control of prosthesis.
    Kumar Koppolu P; Chemmangat K
    Biomed Phys Eng Express; 2024 Sep; 10(6):. PubMed ID: 39231462
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison between force and position control strategies in myoelectric prostheses.
    Ameri A; Englehart KB; Parker PA
    Annu Int Conf IEEE Eng Med Biol Soc; 2012; 2012():1342-5. PubMed ID: 23366147
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Real time ECG artifact removal for myoelectric prosthesis control.
    Zhou P; Lock B; Kuiken TA
    Physiol Meas; 2007 Apr; 28(4):397-413. PubMed ID: 17395995
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Increasing the robustness against force variation in EMG motion classification by common spatial patterns.
    Xiangxin Li ; Peng Fang ; Lan Tian ; Guanglin Li
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():406-409. PubMed ID: 29059896
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An artefact suppressing fast-recovery myoelectric amplifier.
    Thorsen R
    IEEE Trans Biomed Eng; 1999 Jun; 46(6):764-6. PubMed ID: 10356884
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Closed-Loop Control of Myoelectric Prostheses With Electrotactile Feedback: Influence of Stimulation Artifact and Blanking.
    Hartmann C; Dosen S; Amsuess S; Farina D
    IEEE Trans Neural Syst Rehabil Eng; 2015 Sep; 23(5):807-16. PubMed ID: 25222951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Capacitively coupled EMG detection via ultra-low-power microcontroller STFT.
    Roland T; Baumgartner W; Amsuess S; Russold MF
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():410-413. PubMed ID: 29059897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Real-time myoelectric decoding of individual finger movements for a virtual target task.
    Smith RJ; Huberdeau D; Tenore F; Thakor NV
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2376-9. PubMed ID: 19965192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Mass-Producible Washable Smart Garment with Embedded Textile EMG Electrodes for Control of Myoelectric Prostheses: A Pilot Study.
    Alizadeh-Meghrazi M; Sidhu G; Jain S; Stone M; Eskandarian L; Toossi A; Popovic MR
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Improved prosthetic hand control with concurrent use of myoelectric and inertial measurements.
    Krasoulis A; Kyranou I; Erden MS; Nazarpour K; Vijayakumar S
    J Neuroeng Rehabil; 2017 Jul; 14(1):71. PubMed ID: 28697795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the possible effect of electrode support structure on motion artifact in wearable bioelectric signal monitoring.
    Cömert A; Hyttinen J
    Biomed Eng Online; 2015 May; 14():44. PubMed ID: 25976349
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wearable EMG Measurement Device Using Polyurethane Foam for Motion Artifact Suppression.
    Takagi T; Tomita N; Sato S; Yamamoto M; Takamatsu S; Itoh T
    Sensors (Basel); 2024 May; 24(10):. PubMed ID: 38793840
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved Prosthetic Control Based on Myoelectric Pattern Recognition via Wavelet-Based De-Noising.
    Maier J; Naber A; Ortiz-Catalan M
    IEEE Trans Neural Syst Rehabil Eng; 2018 Feb; 26(2):506-514. PubMed ID: 29432116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimation and application of EMG amplitude during dynamic contractions.
    Clancy EA; Bouchard S; Rancourt D
    IEEE Eng Med Biol Mag; 2001; 20(6):47-54. PubMed ID: 11838258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Robust EMG-fMRI artifact reduction for motion (FARM).
    van der Meer JN; Tijssen MA; Bour LJ; van Rootselaar AF; Nederveen AJ
    Clin Neurophysiol; 2010 May; 121(5):766-76. PubMed ID: 20117046
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabric Vest Socket with Embroidered Electrodes for Control of Myoelectric Prosthesis.
    Lee S; Jamil B; Kim S; Choi Y
    Sensors (Basel); 2020 Feb; 20(4):. PubMed ID: 32098252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced EMG signal processing for simultaneous and proportional myoelectric control.
    Nielsen JL; Holmgaard S; Jiang N; Englehart K; Farina D; Parker P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():4335-8. PubMed ID: 19963822
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.